Embedding 层的pytorch代码及参考资源

Embedding 层的pytorch代码及参考资源

https://blog.csdn.net/weixin_43914889/article/details/104699657?utm_source=app&app_version=4.7.1

  • 主要是搜集一些好资源,帮助自己复习。
  • Embedding层主要输入两个参数:vocab_size(训练数据总词汇数),embedding_dim(词嵌入维度)
    pytorch 官方文档

翻译一下

embedding层就是存储着有固定字典和尺寸的词嵌入的一个简单查询表
这个模块通常被用于存储词向量并且使用索引来实现词向量。
模型的输入是一个样本每个字对应的索引列表,输出是样本中的每个字相对应的词向量。
-输入和输出是关键点,输入是数字化列表,输出是对应的指定维度的词向量。

  • 实际中可能也较少用到这个embedding 层,主要是可以用bert的预训练词向量。
这里是一个简单的 gcn 实现代码,用于实现图嵌入(graph embedding)任务。代码使用了 PyTorch 框架。 ``` python import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data import Dataset, DataLoader class GraphConvolution(nn.Module): def __init__(self, in_features, out_features): super(GraphConvolution, self).__init__() self.weight = nn.Parameter(torch.FloatTensor(in_features, out_features)) self.bias = nn.Parameter(torch.FloatTensor(out_features)) self.reset_parameters() def reset_parameters(self): nn.init.xavier_uniform_(self.weight) nn.init.zeros_(self.bias) def forward(self, input, adj): support = torch.mm(input, self.weight) output = torch.spmm(adj, support) output = output + self.bias return output class GCN(nn.Module): def __init__(self, nfeat, nhid, nclass, dropout): super(GCN, self).__init__() self.gc1 = GraphConvolution(nfeat, nhid) self.gc2 = GraphConvolution(nhid, nclass) self.dropout = dropout def forward(self, x, adj): x = F.relu(self.gc1(x, adj)) x = F.dropout(x, self.dropout, training=self.training) x = self.gc2(x, adj) return x class GraphDataset(Dataset): def __init__(self, adj, features, labels): self.adj = adj self.features = features self.labels = labels def __len__(self): return len(self.labels) def __getitem__(self, idx): return self.adj[idx], self.features[idx], self.labels[idx] def train(model, optimizer, criterion, train_loader, device): model.train() for adj, features, labels in train_loader: adj, features, labels = adj.to(device), features.to(device), labels.to(device) optimizer.zero_grad() output = model(features, adj) loss = criterion(output, labels) loss.backward() optimizer.step() def evaluate(model, criterion, val_loader, device): model.eval() total_loss = 0.0 total_correct = 0 with torch.no_grad(): for adj, features, labels in val_loader: adj, features, labels = adj.to(device), features.to(device), labels.to(device) output = model(features, adj) loss = criterion(output, labels) total_loss += loss.item() * len(labels) pred_labels = output.argmax(dim=1) total_correct += pred_labels.eq(labels).sum().item() return total_loss / len(val_loader.dataset), total_correct / len(val_loader.dataset) def main(): # load data adj = np.load('adj.npy') features = np.load('features.npy') labels = np.load('labels.npy') # split data train_idx = np.random.choice(len(labels), int(len(labels)*0.8), replace=False) val_idx = np.setdiff1d(np.arange(len(labels)), train_idx) train_adj, train_features, train_labels = adj[train_idx], features[train_idx], labels[train_idx] val_adj, val_features, val_labels = adj[val_idx], features[val_idx], labels[val_idx] # create data loaders train_dataset = GraphDataset(train_adj, train_features, train_labels) val_dataset = GraphDataset(val_adj, val_features, val_labels) train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True) val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False) # create model device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = GCN(nfeat=features.shape[1], nhid=16, nclass=labels.max().item()+1, dropout=0.5).to(device) # train model optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4) criterion = nn.CrossEntropyLoss() best_val_acc = 0.0 for epoch in range(100): train(model, optimizer, criterion, train_loader, device) val_loss, val_acc = evaluate(model, criterion, val_loader, device) if val_acc > best_val_acc: best_val_acc = val_acc torch.save(model.state_dict(), 'best_model.pt') print('Epoch: {:04d}'.format(epoch+1), 'loss_train: {:.4f}'.format(criterion(model(train_features, train_adj), train_labels).item()), 'loss_val: {:.4f}'.format(val_loss), 'acc_val: {:.4f}'.format(val_acc)) if __name__ == '__main__': main() ``` 代码实现了一个简单的 GCN 模型,包括两个 GraphConvolution 和一个 ReLU 激活函数。训练过程中使用了交叉熵损失函数和 Adam 优化器。训练和验证数据集使用了 PyTorch 的 DataLoader 进行批处理。在每个 epoch 结束时,记录了训练和验证损失以及验证精度。 这个代码需要三个数据文件 `adj.npy`、`features.npy` 和 `labels.npy`,分别是邻接矩阵、特征矩阵和标签向量。你需要根据你自己的数据集进行修改。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值