理解:
出入栈规律之一,如果前面有一个比较大的数,后面有连续的递增顺序,递增顺序>=2个小于前面比较大的数,那么此出栈顺序不可能实现。比如4,1,2,3,5。
思路:输入一个数,然后不断按照顺序模拟入栈,从a->stack数组,过程中发现与输入数相等的,则出栈,while循环中的p,是当栈顶元素不相等,并且都已经入栈完毕时,发挥跳出while不再入栈的作用,如果去掉就会不断入栈,无法出现no的情况。
视频讲解:https://www.bilibili.com/video/BV1rC4y1H7c3?from=search&seid=13655648136491386031
Description
给一个初始的入栈序列,其次序即为元素的入栈次序,栈顶元素可以随时出栈,每个元素只能入栈依次。输入一个入栈序列,后面依次输入多个序列,请判断这些序列是否为所给入栈序列合法的出栈序列。
例如序列1,2,3,4,5是某栈的压入顺序,序列4,5,3,2,1是该压栈序列对应的一个出栈序列,但4,3,5,1,2就不可能是该序列的出栈序列。假设压入栈的所有数字均不相等。
Input
第一行输入整数n(1<=n<=10000),表示序列的长度。
第二行输入n个整数,表示栈的压入顺序。
第三行输入整数t(1<=t<=10)。
后面依次输入t行,每行n个整数,表示要判断的每一个出栈序列。
Output
对应每个测试案例输出一行,如果由初始入栈序列可以得到该出栈序列,则输出yes,否则输出no。
Sample
Input
5
1 2 3 4 5
2
4 5 3 2 1
4 3 5 1 2
Output
yes
no
#include<bits/stdc++.h>
using namespace std;
int main()
{
int a[10010],stack[10010];
int n;
scanf("%d",&n);
for(int i=0;i<n;i++)
{
scanf("%d",&a[i]);//存放入栈顺序
}
int t;
scanf("%d",&t);
while(t--)
{
int top=-1,p=0;
for(int i=0;i<n;i++)
{
int k;
scanf("%d",&k);
while(stack[top]!=k||top==-1)//栈顶元素不等于输入的测试数据或者是第一个输入的数据就进入while循环
{
if(p>=n)//如果p超过了n的值,说明该入栈的都入栈了,那么就不用进行下一步操作了,直接break跳出循环
{
break;
}
stack[++top]=a[p++];//模拟从a到stack的入栈过程
}
if(stack[top]==k)//如果发现有和输入相等的,那么此时进行出栈操作
{
top--;
}
}
if(top==-1)//栈顶元素为空则是合法出栈序列反之则不是
{
printf("yes\n");
}
else
{
printf("no\n");
}
}
return 0;
}