第四届蓝桥杯JavaB组省赛-黄金连分数

题目描述

黄金分割数0.61803… 是个无理数,这个常数十分重要,在许多工程问题中会出现。有时需要把这个数字求得很精确。

对于某些精密工程,常数的精度很重要。也许你听说过哈勃太空望远镜,它首次升空后就发现了一处人工加工错误,对那样一个庞然大物,其实只是镜面加工时有比头发丝还细许多倍的一处错误而已,却使它成了“近视眼”!!

言归正传,我们如何求得黄金分割数的尽可能精确的值呢?有许多方法。

比较简单的一种是用连分数:

c7611b64e9e3cc049b3f28661576907f.png

这个连分数计算的“层数”越多,它的值越接近黄金分割数。

请你利用这一特性,求出黄金分割数的足够精确值,要求四舍五入到小数点后100位。

小数点后3位的值为:0.618

小数点后4位的值为:0.6180

小数点后5位的值为:0.61803

小数点后7位的值为:0.6180340

(注意尾部的0,不能忽略)

你的任务是:写出精确到小数点后100位精度的黄金分割值。

注意:尾数的四舍五入! 尾数是0也要保留!

显然答案是一个小数,其小数点后有100位数字,请通过浏览器直接提交该数字。

注意:不要提交解答过程,或其它辅助说明类的内容。

思路:BigInteger+BigDecimal

通过计算,发现黄金数等于某一项斐波那契数列n/n+1项的比值,要精确到小数点100位。
关键在于多少项之后,这前前100位数是稳定不变的。

public class Main{
	public static void main(String[] args) 
	{
		BigInteger a=new BigInteger("1");
		BigInteger b=new BigInteger("1");
		BigInteger c=null;
		for (int i = 3; i <=500; i++) 
		{
			a=a.add(b);c=a;
			a=b;b=c;
			BigDecimal d=new BigDecimal(a).divide(new BigDecimal(b),new MathContext(100));
			System.out.println(d);
		}
	}
}

结果是:

0.6180339887498948482045868343656381177203091798057628621354486227052604628189024497072072041893911375

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值