新手注意!!!autoDL租服务器的省钱大法!!!!!!!!!

1.配置环境用无卡模式!!!!

注意:如果是配置一些需要GPU的环境,记得使用正常的开机模式,比如pip install -e .

2.代码和数据一定不要放到系统盘,强烈建议放到/root/autodl-tmp路径下面

3.克隆实例和跨实例拷贝数据非常好用。

如果没有可用的卡或者当前的实例遇到了不可解决的问题,可以考虑克隆实例;

跨实例拷贝数据比普通的传数据协议快很多。

4.定时开关机

定时开关机本人是用不明白一点,所以一般不会晚上在auto DL上面训练代码。

如果训练途中有事情需要出去,可以在手机上看是否训练完。

5.有些卡会有日常费用,有些是没有的。

6.如果是跑GitHub代码,可以在社区镜像搜一下,搜到了可以直接选。

### 关于AutoDL单个实例是否支持创建多个镜像 在讨论AutoDL单个实例是否支持创建多个镜像时,需明确几个关键点: #### 实例与镜像的关系 AutoDL允许用户在其平台上创建实例,并提供预定义的镜像供用户选择。这些镜像通常包含了特定的软件环境配置,例如TensorFlow、PyTorch等框架及其依赖项[^2]。然而,关于单个实例能否支持创建多个镜像的问题,目前官方文档并未明确提及可以直接在同一实例中运行多个独立的镜像。 #### 数据存储与共享机制 尽管无法直接确认单个实例是否能同时加载多个镜像,但从数据管理的角度来看,AutoDL提供了`/root/autodl-pub/`路径用于公共数据集的访问[^1],而用户的自定义数据可以通过多种方式进行上传和管理[^3]。这表明即使在一个实例中切换不同的工作环境(即不同镜像),也可以通过挂载相同的数据卷来实现资源共享。 #### 成本优化策略 为了降低成本,AutoDL建议用户可以在不需要GPU资源的时候关闭实例或者采用无卡模式启动实例,从而减少费用支出[^4]。这种灵活性间接说明了虽然可能不支持真正意义上的“多镜像并发”,但用户仍然能够灵活调整其使用的镜像以适应不同的任务需求。 综上所述,当前并没有确切证据显示AutoDL支持在一个单独的实例里同时激活两个或更多完全隔离的操作系统级别容器(也就是常说的不同Docker Images),但是考虑到实际应用场景中的变通办法——比如利用同一套基础文件系统配合虚拟化技术模拟出近似效果,则不失为一种可行方案。 ```bash docker run --name=myenv1 -it pytorch/pytorch bash docker commit myenv1 custom_pytorch_env docker run --name=myenv2 -it custom_pytorch_env bash ``` 上述脚本展示了如何基于现有镜像创建新的定制化版本,并再次以此为基础构建另一个会话的过程。这种方法理论上可以满足部分对于“多镜像”的需求场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值