【AutoDL集合】云服务器的连接和运用(手把手教学!有手就行)
一些碎碎念,小白最知道小白会在什么地方卡壳,巨巨巨详细教程来了!!
最近在进行SAM的复现和微调,这个后面闲下来会写一下微调具体的步骤和注意点,今天先来记录一下autodl的链接运用,主要SAM自己电脑带不起来,小白最知道小白会在什么地方卡壳,巨巨巨详细教程来了!!
云服务器优点:
(惯例介绍一下哈,其实就是自己电脑慢,,性能可能发生带不起来的问题,具体的让gpt介绍一下:)
-
弹性扩展:云服务器可以根据需要弹性地增加或减少计算资源,而本地服务器的资源是固定的。当模型需要更多计算资源时,使用云服务器可以很方便地进行扩展,而不需要购买更多的硬件设备。
-
高可用性:云服务器通常有多个节点和备份机制,可以保证系统的高可用性。当一台云服务器发生故障时,可以自动切换到其他服务器上,保证模型服务的连续性。
-
灵活性:使用云服务器可以根据需求选择合适的计算规格,例如选择不同的CPU核数、内存大小等,从而灵活地满足不同模型的运行需要。而本地服务器的配置是固定的,可能无法满足多样化的模型需求。
-
全球覆盖:云服务器供应商通常在多个地理位置都有服务器节点,可以提供全球范围内的计算资源。这对于需要在不同地区进行模型训练或推理的场景非常重要。
-
节省成本:使用云服务器可以避免购买和维护本地服务器的成本。同时,云服务器通常采用按需付费的方式,只需支付实际使用的计算资源,可以更加灵活地控制成本。
综上所述,使用云服务器跑模型可以提供弹性扩展、高可用性、灵活性、全球覆盖和节省成本等优势,更适合多变的模型需求和业务场景。
一、创建实例
首先进入AutoDL官网:官网点这里跳转
登录AutoDl平台,充值任意金额以后(一般跑一个大模型我自己实验差不多充20块钱就差不多了,训练+原模型和你训练结束模型的对比训练<我的是少样本训练差不多是1000张图左右,差不多迭代了60多次就跑出来了最优模型,数据量大或者模型匹配度没那么好的酌情增加哈>),选择一个性能好一些的服务器来租用,选好了之后点击右下角的立即创建即可