【AutoDL集合】云服务器的连接和运用(手把手教学!有手就行)【更新中】

本文详细介绍了如何在AutoDL平台上创建云服务器实例,使用PyCharm连接,包括专业版配置,以及通过Xftp传输文件的过程。重点强调了云服务器的优点,如弹性扩展、高可用性和成本节省。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一些碎碎念,小白最知道小白会在什么地方卡壳,巨巨巨详细教程来了!!

最近在进行SAM的复现和微调,这个后面闲下来会写一下微调具体的步骤和注意点,今天先来记录一下autodl的链接运用,主要SAM自己电脑带不起来,小白最知道小白会在什么地方卡壳,巨巨巨详细教程来了!!

云服务器优点:

(惯例介绍一下哈,其实就是自己电脑慢,,性能可能发生带不起来的问题,具体的让gpt介绍一下:)

  1. 弹性扩展:云服务器可以根据需要弹性地增加或减少计算资源,而本地服务器的资源是固定的。当模型需要更多计算资源时,使用云服务器可以很方便地进行扩展,而不需要购买更多的硬件设备。

  2. 高可用性:云服务器通常有多个节点和备份机制,可以保证系统的高可用性。当一台云服务器发生故障时,可以自动切换到其他服务器上,保证模型服务的连续性。

  3. 灵活性:使用云服务器可以根据需求选择合适的计算规格,例如选择不同的CPU核数、内存大小等,从而灵活地满足不同模型的运行需要。而本地服务器的配置是固定的,可能无法满足多样化的模型需求。

  4. 全球覆盖:云服务器供应商通常在多个地理位置都有服务器节点,可以提供全球范围内的计算资源。这对于需要在不同地区进行模型训练或推理的场景非常重要。

  5. 节省成本:使用云服务器可以避免购买和维护本地服务器的成本。同时,云服务器通常采用按需付费的方式,只需支付实际使用的计算资源,可以更加灵活地控制成本。

综上所述,使用云服务器跑模型可以提供弹性扩展、高可用性、灵活性、全球覆盖和节省成本等优势,更适合多变的模型需求和业务场景。

一、创建实例

首先进入AutoDL官网:官网点这里跳转
登录AutoDl平台,充值任意金额以后(一般跑一个大模型我自己实验差不多充20块钱就差不多了,训练+原模型和你训练结束模型的对比训练<我的是少样本训练差不多是1000张图左右,差不多迭代了60多次就跑出来了最优模型,数据量大或者模型匹配度没那么好的酌情增加哈>),选择一个性能好一些的服务器来租用,选好了之后点击右下角的立即创建即可

### 关于 AutoDL 社区版在 PyCharm 中的使用教程 #### 1. 租用 GPU 实例并创建环境 在 AutoDL 平台上,用户可以根据需求选择合适的 GPU 配置来租用实例。对于社区版用户而言,可以选择适合的任务场景(如图像处理、自然语言处理等)所需的镜像模板[^1]。完成实例创建后,可以通过 SSH 登录到该实例。 SSH 登录指令通常如下所示: ```bash ssh -p {端口号} root@{HOST} ``` 其中 `{端口号}` `{HOST}` 是平台分配的具体参数[^1]。 为了支持 Conda 的正常运,在登录后需修改 `.bashrc` 文件以激活 Conda 环境管理功能。具体操作步骤为: 1. 编辑 `~/.bashrc` 文件:`vim ~/.bashrc` 2. 添加以下内容至文件末尾:`source /root/miniconda3/etc/profile.d/conda.sh` 3. 保存退出后执 `bash` 命令刷新当前会话。 随后即可通过 `conda activate base` 或者创建新的虚拟环境来进依赖包安装[^1]。 #### 2. 安装必要的 Python 库 根据项目的需求,可以在虚拟环境中安装特定版本的库。例如,如果需要安装 PyTorch,则应先确认 CUDA 版本号,并访问官方文档获取对应命令。假设使用的 CUDA 版本为 11.3,则可通过以下命令安装指定版本的 PyTorch 及其相关组件: ```bash conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.3 -c pytorch ``` #### 3. 配置 PyCharm 远程开发环境 要实现 PyCharm 对 AutoDL 实例的远程调试,首先确保已购买正版 PyCharm 专业版软件[^3]。接着按照以下流程设置: - 打开 PyCharm 后新建或打开现有项目; - 转至 **File -> Settings -> Build, Execution, Deployment -> Toolchains**,点击加号按钮新增一个 Remote 工具链; - 输入之前记录下的 SSH 参数以及目标解释器路径 `/root/miniconda3/bin/python` 或其他自定义虚拟环境位置 `/root/miniconda3/envs/{env_name}/bin/python`[^2]; - 测试连接是否成功,若一切正常则可以开始同步代码与运程序。 #### 4. 数据传输与验证 当配置完毕后,可以直接利用 PyCharm 提供的功能将本地源码上传至服务器上的指定目录下(比如默认推荐的 `autodl-tmp-{foldername}`)。最后再次进入终端窗口检查整个部署过程是否有误[^1]。 --- ###
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值