numpy作业

这篇博客详细介绍了NumPy库中的一些基本操作,包括数组的创建、最大值、最小值、加减运算、零数组、随机数生成等。还涉及到了数组的拆分(垂直和水平)、索引选择、插入删除元素、选择概率分布等。此外,还讨论了矩阵操作,如矩阵乘法、转置、形状变换、索引选择和赋值。博客深入探讨了NumPy在处理数组和矩阵时的高效方法,对于理解和使用NumPy非常有帮助。
摘要由CSDN通过智能技术生成

numpy作业

import numpy as np
data = np.array([1,2,3])
print(data.max())
np.array([1,2,3])
3
array([1, 2, 3])
np.zeros(3)
np.zeros(3)
array([0., 0., 0.])
np.random.random(3)
array([0.82803553, 0.63430246, 0.80903433])
ones = np.ones(2)
data = np.array([1,2])
data + ones
array([2., 3.])
data.min()
1
data.sum()
3
np.ones((3,2))
array([[1., 1.],
       [1., 1.],
       [1., 1.]])
c = np.arange(1,13).reshape(6,2)
数组拆分 垂直拆分

c
array([[ 1,  2],
       [ 3,  4],
       [ 5,  6],
       [ 7,  8],
       [ 9, 10],
       [11, 12]])
np.vsplit(c,3)
[array([[1, 2],
        [3, 4]]),
 array([[5, 6],
        [7, 8]]),
 array([[ 9, 10],
        [11, 12]])]
水平拆分

d=c.T
d
array([[ 1,  3,  5,  7,  9, 11],
       [ 2,  4,  6,  8, 10, 12]])
np.hsplit(d,3)
[array([[1, 3],
        [2, 4]]),
 array([[5, 7],
        [6, 8]]),
 array([[ 9, 11],
        [10, 12]])]
a = np.arange(11,29).reshape(2,9)
a
array([[11, 12, 13, 14, 15, 16, 17, 18, 19],
       [20, 21, 22, 23, 24, 25, 26, 27, 28]])
inistate = np.array([1,2,3,4])
pre_inistate = inistate[0:3]
pre_inistate
array([1, 2, 3])
import random
al = random.randint(0,1)#a=alpha
al
0
import numpy as np
a = np.array([1,1,1,1])
b = np.array([[1],[1],[1],[1]])
a+b   
array([[2, 2, 2, 2],
       [2, 2, 2, 2],
       [2, 2, 2, 2],
       [2, 2, 2, 2]])
c = np.array([[1,1,1,1]])
c+b
array([[2, 2, 2, 2],
       [2, 2, 2, 2],
       [2, 2, 2, 2],
       [2, 2, 2, 2]])
W = np.array([[1,1,1],[2,2,2]])
W[:,1]
array([1, 2])
W[1]
array([2, 2, 2])
W[:,1] = np.array([5,5])
W
array([[1, 5, 1],
       [2, 5, 2]])
matrix = [[1,2,3,4],
         [5,6,7,8],
         [9,10,11,12]]
p1 = np.delete(matrix,1,0)
p1
array([[ 1,  2,  3,  4],
       [ 9, 10, 11, 12]])
p2 = np.delete(matrix,2,1)
p2
array([[ 1,  2,  4],
       [ 5,  6,  8],
       [ 9, 10, 12]])
p3 = np.delete(matrix,1)
p3

array([ 1,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12])
p4 = np.delete(matrix,[0,1],1)
p4
array([[ 3,  4],
       [ 7,  8],
       [11, 12]])
q1 = np.insert(matrix,1,[1,1,1,1],0)
q1
array([[ 1,  2,  3,  4],
       [ 1,  1,  1,  1],
       [ 5,  6,  7,  8],
       [ 9, 10, 11, 12]])
q2 = np.insert(matrix,0,[1,1,1],1)
q2
array([[ 1,  1,  2,  3,  4],
       [ 1,  5,  6,  7,  8],
       [ 1,  9, 10, 11, 12]])
import numpy as np
q3 = np.insert(matrix,3,[1,1,1,1],0)
q3
array([[ 1,  2,  3,  4],
       [ 5,  6,  7,  8],
       [ 9, 10, 11, 12],
       [ 1,  1,  1,  1]])
m1 = np.append(matrix,[[1,1,1,1]],axis = 0)
m1
array([[ 1,  2,  3,  4],
       [ 5,  6,  7,  8],
       [ 9, 10, 11, 12],
       [ 1,  1,  1,  1]])
m2 = np.append(matrix,[[1],[1],[1]],axis=1)
m2
array([[ 1,  2,  3,  4,  1],
       [ 5,  6,  7,  8,  1],
       [ 9, 10, 11, 12,  1]])
m3=np.append(matrix,[1,1,1,1])
m3
array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12,  1,  1,  1,  1])
import numpy as np
a1 = np.random.choice(7,5)
a1
array([1, 4, 6, 6, 1])
a2 = np.random.choice([0,1,2,3,4,5,6],5) 
a2
array([0, 6, 2, 0, 3])
a3 = np.random.choice(np.array([0,1,2,3,4,5,6]),5)
a3
array([5, 2, 4, 0, 6])
a4 = np.random.choice([0,1,2,3,4,5,6],5,replace=False)
a4
array([5, 6, 0, 1, 4])
a5 = np.random.choice(np.array([0,1,2,3,4,5,6]),5,p=[0.1,0.1,0.1,0.1,0.1,0.1,0.4])
a5
array([3, 2, 6, 4, 6])
a = np.array([[1,1,1],[2,2,2],[0,3,6]])
a
array([[1, 1, 1],
       [2, 2, 2],
       [0, 3, 6]])
y1 = np.linspace(-10.0,10.0)
y1
array([-10.        ,  -9.59183673,  -9.18367347,  -8.7755102 ,
        -8.36734694,  -7.95918367,  -7.55102041,  -7.14285714,
        -6.73469388,  -6.32653061,  -5.91836735,  -5.51020408,
        -5.10204082,  -4.69387755,  -4.28571429,  -3.87755102,
        -3.46938776,  -3.06122449,  -2.65306122,  -2.24489796,
        -1.83673469,  -1.42857143,  -1.02040816,  -0.6122449 ,
        -0.20408163,   0.20408163,   0.6122449 ,   1.02040816,
         1.42857143,   1.83673469,   2.24489796,   2.65306122,
         3.06122449,   3.46938776,   3.87755102,   4.28571429,
         4.69387755,   5.10204082,   5.51020408,   5.91836735,
         6.32653061,   6.73469388,   7.14285714,   7.55102041,
         7.95918367,   8.36734694,   8.7755102 ,   9.18367347,
         9.59183673,  10.        ])
y2 = np.linspace(1,10,10)
y2
array([ 1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.,  9., 10.])
y3 = np.linspace(1,10,10,endpoint=False)
y3
array([1. , 1.9, 2.8, 3.7, 4.6, 5.5, 6.4, 7.3, 8.2, 9.1])
y4= np.linspace(1,10,6,retstep=True)
y4
(array([ 1. ,  2.8,  4.6,  6.4,  8.2, 10. ]), 1.8)
x = np.array([[1,2,3],[4,5,6],[1,2,3]])
x.flatten()
array([1, 2, 3, 4, 5, 6, 1, 2, 3])
x.ravel()
array([1, 2, 3, 4, 5, 6, 1, 2, 3])
x.ravel('F')
array([1, 4, 1, 2, 5, 2, 3, 6, 3])
x.flatten('F')
array([1, 4, 1, 2, 5, 2, 3, 6, 3])
x.flatten()[1] = 20
x
array([[1, 2, 3],
       [4, 5, 6],
       [1, 2, 3]])
x.ravel()[1] = 20
x
array([[ 1, 20,  3],
       [ 4,  5,  6],
       [ 1,  2,  3]])
x.reshape(1,-1)
array([[ 1, 20,  3,  4,  5,  6,  1,  2,  3]])
x = np.array([1,2,3,6,7,8])
x[np.newaxis, :] 
array([[1, 2, 3, 6, 7, 8]])
x = np.array([[1,2,3],[2,3,4]])
np.prod(x)
144
np.prod(x,axis=1)
array([ 6, 24])
np.prod(x,axis=0)
array([ 2,  6, 12])
x = np.array([[1,2,3],[-3,2,4],[5,-2,9]])
x
array([[ 1,  2,  3],
       [-3,  2,  4],
       [ 5, -2,  9]])
y1 = np.maximum(0,x)
y1
array([[1, 2, 3],
       [0, 2, 4],
       [5, 0, 9]])
y2 = np.minimum(0,x) 
y2
array([[ 0,  0,  0],
       [-3,  0,  0],
       [ 0, -2,  0]])
x1 = x.copy()
x1
array([[ 1,  2,  3],
       [-3,  2,  4],
       [ 5, -2,  9]])
x1[x1 < 0] = 0
x1
array([[1, 2, 3],
       [0, 2, 4],
       [5, 0, 9]])
x1 = x.copy() 
​
x1[x1 > 0] = 0
x1
array([[ 0,  0,  0],
       [-3,  0,  0],
       [ 0, -2,  0]])
x2 = x 
x2
array([[ 1,  2,  3],
       [-3,  2,  4],
       [ 5, -2,  9]])
x = np.random.randn(2,3)
x
array([[ 1.24680723,  0.91824383,  0.28538199],
       [-0.40131634, -0.86495141,  0.41326433]])
y = np.multiply(0.1,np.random.randn(2,3))+0.5 
y
array([[0.32402783, 0.4173647 , 0.47597192],
       [0.48777518, 0.37248559, 0.45266113]])
z = np.random.randint(2,9,(2,3))
z
array([[5, 3, 7],
       [6, 4, 7]])
m = np.random.randint(9,size = (2,3))
m
array([[1, 8, 2],
       [8, 7, 5]])
A = np.arange(95,99).reshape(2,2)
A
array([[95, 96],
       [97, 98]])
​
  File "<ipython-input-60-573c188ac3f2>", line 1
    np.pad(A,((3,2),(2,3)),‘constant’,constant_values = (0,0))
                                    ^
SyntaxError: invalid character in identifier


b = np.array([[[1,2],[3,4]],[[3,4],[7,8]],[[4,5],[1,2]]])
​
b
array([[[1, 2],
        [3, 4]],

       [[3, 4],
        [7, 8]],

       [[4, 5],
        [1, 2]]])
np.pad(b, ((0,0),(1,1),(1,1)), ‘constant’, constant_values = 0)
  File "<ipython-input-62-9bdde28e612a>", line 1
    np.pad(b, ((0,0),(1,1),(1,1)), ‘constant’, constant_values = 0)
                                            ^
SyntaxError: invalid character in identifier


c = np.array([[1,2],[3,4]])
c
array([[1, 2],
       [3, 4]])
c.astype(np.float32)
array([[1., 2.],
       [3., 4.]], dtype=float32)
x = np.array([1,3,5])
y = np.array([4,6])
XX,YY = np.meshgrid(x,y)
XX
array([[1, 3, 5],
       [1, 3, 5]])
x = np.array([[3,4,5],[1,3,4]])
y = np.array([[1,1,1],[2,2,2]])
np.hstack((x,y))
array([[3, 4, 5, 1, 1, 1],
       [1, 3, 4, 2, 2, 2]])
np.vstack((x,y))
array([[3, 4, 5],
       [1, 3, 4],
       [1, 1, 1],
       [2, 2, 2]])
a = np.array([0.125,0.568,5.688])
np.round(a)
array([0., 1., 6.])
np.round(a,decimals = 2) 
array([0.12, 0.57, 5.69])
np.floor(a) 
array([0., 0., 5.])
np.ceil(a) 
array([1., 1., 6.])
c = np.array([1,2,5,4])
c[:,np.newaxis]
array([[1],
       [2],
       [5],
       [4]])
import numpy as np
a = np.array([[1,2,3],[4,5,6]])
a = np.array([[1,2,3,6],[4,5,6,6]])
a1 = a.reshape((1,2,4))
a1
array([[[1, 2, 3, 6],
        [4, 5, 6, 6]]])
b = np.array([[3,4,5,6],[1,2,3,4],[4,5,5,5]])
b
array([[3, 4, 5, 6],
       [1, 2, 3, 4],
       [4, 5, 5, 5]])
b1 = b.reshape((1,3,4)).transpose((1,0,2))
b1
array([[[3, 4, 5, 6]],

       [[1, 2, 3, 4]],

       [[4, 5, 5, 5]]])
c = np.array([[[1,2,5],[3,4,6]],[[4,5,6],[7,8,9]]])
c
array([[[1, 2, 5],
        [3, 4, 6]],

       [[4, 5, 6],
        [7, 8, 9]]])
c.transpose(1,2,0)
array([[[1, 4],
        [2, 5],
        [5, 6]],

       [[3, 7],
        [4, 8],
        [6, 9]]])
a = np.array([2,2,3,4,5,5,6,7])
a[0:7:2]
array([2, 3, 5, 6])
a = np.array([2,2,3,4,5,5,6,7])
a[0::2]
array([2, 3, 5, 6])
a[::-1]
array([7, 6, 5, 5, 4, 3, 2, 2])
a = np.array([2,2,3,4,5,5,6,7])
s = slice(0,7,2)
a[s]
array([2, 3, 5, 6])

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值