本专栏包含信息论与编码的核心知识,按知识点组织,可作为教学或学习的参考。markdown版本已归档至【Github仓库:information-theory】,需要的朋友们自取。或者公众号【AIShareLab】回复 信息论 也可获取。
熵速率 (entropy rate)
定义:一个平稳的时域离散随机过程的熵速率 (entropy rate) 定义为
H
=
lim
n
→
∞
H
(
X
n
∣
X
1
,
X
2
,
…
,
X
n
−
1
)
H=\lim _{n \rightarrow \infty} H(X_{n} \mid X_{1}, X_{2}, \ldots, X_{n-1})
H=n→∞limH(Xn∣X1,X2,…,Xn−1)
具有记忆性的信源的熵速率定义为
H = lim n → ∞ 1 n H ( X 1 , X 2 , … , X n ) H=\lim _{n \rightarrow \infty} \frac{1}{n} H\left(X_{1}, X_{2}, \ldots, X_{n}\right) H=n→∞limn1H(X1,X2,…,Xn)
Example 两个二进制随机变量 X \mathbf{X} X 和 Y \mathbf{Y} Y , 其联合分布为 p(X=Y=0) = p( X=0, Y=1) = p( X=Y=1) = 1/3 。
计算 H ( X ) H(X) H(X), H ( Y ) H(Y) H(Y), H ( X ∣ Y ) H(X \mid Y) H(X∣Y), H ( Y ∣ X ) H(Y \mid X) H(Y∣X) , and H ( X , Y ) H(X, Y) H(X,Y) 。
Solution:
p ( X = 0 ) = p ( X = 0 , Y = 0 ) + p ( X = 0 , Y = 1 ) = 2 3 p ( X = 1 ) = p ( X = 1 , Y = 0 ) + p ( X = 1 , Y = 1 ) = 1 3 p ( Y = 0 ) = p ( X = 0 , Y = 0 ) + p ( X = 1 , Y = 0 ) = 1 3 p ( Y = 1 ) = p ( X = 0 , Y = 1 ) + p ( X = 1 , Y = 1 ) = 2 3 H ( X ) = 1 3 log 3 + 2 3 log 3 2 = 0.9183 H ( Y ) = 1 3 log 3 + 2 3 log 3 2 = 0.9183 H ( X , Y ) = ∑ i = 1 n p ( X , Y ) log ( X , Y ) = log 3 = 1.585 H ( X ∣ Y ) = H ( X , Y ) − H ( Y ) = 0.6667 H ( Y ∣ X ) = H ( X , Y ) − H ( X ) = 0.6667 \begin{array}{l} p(X=0)=p(X=0, Y=0)+p(X=0, Y=1)=\frac{2}{3} \\ p(X=1)=p(X=1, Y=0)+p(X=1, Y=1)=\frac{1}{3} \\ p(Y=0)=p(X=0, Y=0)+p(X=1, Y=0)=\frac{1}{3} \\ p(Y=1)=p(X=0, Y=1)+p(X=1, Y=1)=\frac{2}{3} \\ H(X)=\frac{1}{3} \log 3+\frac{2}{3} \log \frac{3}{2}=0.9183 \quad H(Y)=\frac{1}{3} \log 3+\frac{2}{3} \log \frac{3}{2}=0.9183 \\ H(X, Y)=\sum_{i=1}^{n} p(X, Y) \log (X, Y)=\log 3=1.585 \\ H(X \mid Y)=H(X, Y)-H(Y)=0.6667 \quad H(Y \mid X)=H(X, Y)-H(X)=0.6667 \end{array} p(X=0)=p(X=0,Y=0)+p(X=0,Y=1)=32p(X=1)=p(X=1,Y=0)+p(X=1,Y=1)=31p(Y=0)=p(X=0,Y=0)+p(X=1,Y=0)=31p(Y=1)=p(X=0,Y=1)+p(X=1,Y=1)=32H(X)=31log3+32log23=0.9183H(Y)=31log3+32log23=0.9183H(X,Y)=∑i=1np(X,Y)log(X,Y)=log3=1.585H(X∣Y)=H(X,Y)−H(Y)=0.6667H(Y∣X)=H(X,Y)−H(X)=0.6667
各类熵的关系
- 条件熵不大于信息熵
熵的不增原理: H ( Y / X ) ≤ H ( Y ) H(Y / X) \leq H(Y) H(Y/X)≤H(Y)
-
联合熵不大于个信息熵的和,即
H ( X 1 X 2 … X N ) ≤ ∑ i = 1 N H ( X i ) H\left(X_{1} X_{2} \ldots X_N\right) \leq \sum_{i=1}^{N} H\left(X_{i}\right) H(X1X2…XN)≤∑i=1NH(Xi)
仅当各 X i X_{i} Xi 相互独立时, 等号成立。
-
H ( X Y ) = H ( X ) + H ( Y ∣ X ) = H ( Y ) + H ( X ∣ Y ) H(X Y)=H(X)+H(Y \mid X)=H(Y)+H(X \mid Y) H(XY)=H(X)+H(Y∣X)=H(Y)+H(X∣Y)
-
H ( X ) ≥ H ( X ∣ Y ) ; H ( Y ) ≥ H ( Y ∣ X ) H(X) \geq H(X \mid Y) ; H(Y) \geq H(Y \mid X) H(X)≥H(X∣Y);H(Y)≥H(Y∣X)
参考文献:
- Proakis, John G., et al. Communication systems engineering. Vol. 2. New Jersey: Prentice Hall, 1994.
- Proakis, John G., et al. SOLUTIONS MANUAL Communication Systems Engineering. Vol. 2. New Jersey: Prentice Hall, 1994.
- 周炯槃. 通信原理(第3版)[M]. 北京:北京邮电大学出版社, 2008.
- 樊昌信, 曹丽娜. 通信原理(第7版) [M]. 北京:国防工业出版社, 2012.