最短路问题

朴素Dijkstra算法

#include <iostream>
#include <algorithm>
using namespace std;

// http://t.csdn.cn/Md07K



// 迪杰斯特拉算法
// 适用:单源最短路,所有边权都是正数,稠密图( m ~ n^2 )


const int N = 510;
int n, m;


// 边的存储用邻接矩阵(稠密图用邻接矩阵,稀疏图用邻接表)
int g[N][N];
int dist[N];
bool st[N]; // true表示该点已经确定最短路了


// 此算法只适合于求单源最短路,默认起点为1
void dijkstra()
{
	// 初始化距离为 “无穷大”
	memset(dist, 0x3f, sizeof dist);
	dist[1] = 0;

	// 一次循环会确认一个点的最短路径,n 个点即进行 n 次循环
	for (int i = 0; i < n; i++)
	{
		// 找到未被确认最小路径的所有点中的最小路径值,该值可被确认为最小路径
		int t = 0; // 0为无效点,且 0 为数组合法范围,可以作为比较点
		for (int j = 1; j <= n; j++)
		{
			if (!st[j] && dist[t] > dist[j])
			{
				t = j;
			}
		}

		st[t] = true;

		// 用该点维护其他点
		for (int j = 1; j <= n; j++)
		{
			dist[j] = min(dist[j], dist[t] + g[t][j]);
		}
	}

	// 如果经过算法计算后 dist[i] 仍为 “无穷大” (0x3f3f3f3f),表明从 1 点无法到达 i 点
}



int main()
{
	cin >> n >> m;

	// 初始化邻接矩阵
	memset(g, 0x3f, sizeof g);
	
	while (m--)
	{
		int a, b, c;
		cin >> a >> b >> c;

		// 有重边的保留权重最小的边
		g[a][b] = min(g[a][b], c);
	}

	dijkstra();

	// 处理输出
	for (int i = 1; i <= n; i++)
	{
		if (dist[i] != 0x3f3f3f3f)
		{
			cout << dist[i] << endl;
		}
		else
		{
			cout << -1 << endl;
		}
	}

	return 0;
}

堆优化Dijkstra算法

#include <iostream>
#include <queue>

using namespace std;
/*


堆优化版dijkstra算法
适用:单源最短路,所有边权都是正数,稀疏图(n ~ m)


*/


// 堆中数据既要维护最短距离,也要存储对应的点,所以用 pair 存储
typedef pair<int, int> PII;


const int N = 100010;

int n, m;

// 边的存储方式为邻接表
int h[N], e[N], w[N], ne[N], idx;

// dist存储距离
int dist[N];

// st[i] 为 true 表示 i点 已经确认最短路了
bool st[N];

// 插入一条从 a 指向 b 权重为 c 的边
void insert(int a, int b, int c)
{
	e[idx] = b;
	w[idx] = c;
	ne[idx] = h[a];
	h[a] = idx;
	idx++;
}

void dijkstra()
{
	// 初始化距离
	memset(dist, 0x3f, sizeof dist);
	dist[1] = 0;

	// 建立小根堆维护距离
	priority_queue<PII, vector<PII>, greater<PII>> hp;

	// 将起点放进去
	hp.push({ 0,1 });

	// 堆不为空
	while (hp.size())
	{
		PII t = hp.top();
		hp.pop();

		int ver = t.second;
		int distance = t.first;

		// 通过此步可以筛除重边
		if (!st[ver])
		{
			st[ver] = true;

			// 维护与该点相连的点
			for (int i = h[ver]; i != -1; i = ne[i])
			{
				int j = e[i];
				
				if (dist[j] > distance + w[i])
				{
					dist[j] = distance + w[i];
					hp.push({ dist[j], j });
				}
			}
		}
	}
}



int main()
{
	// 初始化邻接表表头
	memset(h, -1, sizeof h);

	cin >> n >> m;

	while (m--)
	{
		int a, b, c;
		cin >> a >> b >> c;
		insert(a, b, c);
	}

	dijkstra();

	for (int i = 1; i <= n; i++)
	{
		if (dist[i] == 0x3f3f3f3f)
		{
			cout << -1 << endl;
		}
		else
		{
			cout << dist[i] << endl;
		}
	}

	return 0;
}

Bellman-Ford算法

#include <iostream>
using namespace std;


/*


贝尔曼-福特算法
适用:单源最短路,存在负权边,有边数限制


*/

const int N = 510;
const int M = 10010;

int n, m;
int dist[N];

struct Edge
{
	// a指向b,权重为c
	int a, b, c;
}edges[M];


void bellman_ford()
{
	memset(dist, 0x3f, sizeof dist);
	dist[1] = 0;

	// 如果第n次迭代仍然会松弛三角不等式,就说明存在一条长度是n+1的最短路径,由抽屉原理,路径中至少存在两个相同的点,说明图中存在负权回路。
	for (int i = 0; i < n; i++)
	{
		for (int j = 0; j < m; j++)
		{
			int a = edges[i].a;
			int b = edges[i].b;
			int c = edges[i].c;

			dist[b] = min(dist[b], dist[a] + c);
		}
	}
}

int main()
{
	cin >> n >> m;

	for (int i = 0; i < m; i++)
	{
		int a, b, c;
		cin >> a >> b >> c;

		edges[i] = { a,b,c };
	}


	bellman_ford();

	for (int i = 1; i <= n; i++)
	{
		// 如果 dist[i] 大于一个比较大的数,则表明最短路不存在
		// 因为即使某点的最短路不存在,在遍历边的时候该点的 0x3f3f3f3f 会被更新,不能用==0x3f3f3f3f来判断是否有最短路
		if (dist[i] > 0x3f3f3f3f / 2)
		{
			cout << -1 << endl;
		}
		else
		{
			cout << dist[i] << endl;
		}
	}

	return 0;
}

Bellman-Ford算法例题

#include <iostream>

using namespace std;

const int N = 510;
const int M = 10010;


/*

给定一个n个点m条边的有向图,图中可能存在重边和自环,边权可能为负数。
请你求出从1号点到n号点的最多经过k条边的最短距离,如果无法从1号点走到n号点,输出impossible.

注意:图中可能存在负权回路

输入格式
第一行包含三个整数n,m,k。
接下来m行,每行包含三个整数x,y,Z,表示点x和点y之间存在一条有向边,边长为Z。

输出格式
输出一个整数,表示从1号点到n号点的最多经过k条边的最短距离如果不存在满足条件的路径,则输出“impossible”。

*/

struct Edge
{
	int a, b, c;
}edges[M];


int n, m, k;
int dist[N], backup[N];



void bellman_ford()
{
	memset(dist, 0x3f, sizeof dist);
	dist[1] = 0;

	for (int i = 0; i < k; i++)
	{
		// backup用来备份上一轮循环后的dist数据,并用此数据更新此轮循环
		memcpy(backup, dist, sizeof dist);

		for (int j = 0; j < m; j++)
		{
			int a = edges[j].a;
			int b = edges[j].b;
			int c = edges[j].c;

			dist[b] = min(dist[b], backup[a] + c);
		}
	}
}


int main()
{
	cin >> n >> m >> k;

	for (int i = 0; i < m; i++)
	{
		int a, b, c;
		cin >> a >> b >> c;

		edges[i] = { a,b,c };
	}

	bellman_ford();

	if (dist[n] > 0x3f3f3f3f / 2)
	{
		cout << "impossible" << endl;
	}
	else
	{
		cout << dist[n] << endl;
	}

	return 0;
}

SPFA算法

#include <iostream>
#include <queue>
using namespace std;
/*

SPFA算法
适用:单源最短路,存在负权边,无负环

*/

const int N = 100010;

int n, m;
int h[N], w[N], e[N], ne[N], idx; // 用邻接表存储边
int dist[N]; // 存储每个点到1号点的最短距离
bool st[N]; // 存储每个点是否在队列中

void insert(int a, int b, int c)
{
	e[idx] = b;
	w[idx] = c;
	ne[idx] = h[a];
	h[a] = idx;
	idx++;
}

void spfa()
{
	// 初始化距离
	memset(dist, 0x3f, sizeof dist);
	dist[1] = 0;

	// 初始化队列
	queue<int>q;
	q.push(1);
	st[1] = true;

	while (q.size())
	{
		// 取出第一个点,遍历这个点关联的边
		int t = q.front();
		q.pop();
		st[t] = false;

		for (int i = h[t]; i != -1; i = ne[i])
		{
			int j = e[i];

			if (dist[j] > dist[t] + w[i])
			{
				dist[j] = dist[t] + w[i];

				if (!st[j]) // 如果队列中已存在j,则不需要将j重复插入
				{
					q.push(j);
					st[j] = true;
				}
			}
		}
	}
}
int main()
{
	// 初始化邻接表表头
	memset(h, -1, sizeof h);

	cin >> n >> m;

	for (int i = 0; i < m; i++)
	{
		int a, b, c;
		cin >> a >> b >> c;
		insert(a, b, c);
	}

	spfa();

	for (int i = 1; i <= n; i++)
	{
		if (dist[i] == 0x3f3f3f3f)
		{
			cout << -1 << endl;
		}
		else
		{
			cout << dist[i] << endl;
		}
	}

	return 0;
}

SPFA算法判断负环

#include <iostream>
#include <queue>
using namespace std;


/*


给定一个n个点m条边的有向图,图中可能存在重边和自环,边权可能为负数请你判断图中是否存在负权回路

输入格式
第一行包含整数n和m。
接下来m行每行包含三个整数x,y,z,表示点x和点y之间存在一条有向边,边长为Z。

输出格式
如果图中存在负权回路,则输出“Yes”,否则输出“No”

数据范围
1 < n < 2000,
1 < m < 10000,
图中涉及边长绝对值均不超过10000。


*/


int n, m;
const int N = 100010;

// 邻接表存储边
int h[N], e[N], w[N], ne[N], idx;

// 存储距离
int dist[N];

// 存储每个点到1点所经过的边数
int cnt[N];

// 存储每个点是否存在队列中
bool st[N];


void insert(int a, int b, int c)
{
	e[idx] = b;
	w[idx] = c;
	ne[idx] = h[a];
	h[a] = idx;
	idx++;
}


// 如果存在负环,则返回true,否则返回false。
bool spfa()
{
	// 不需要初始化dist数组
	// 原理:如果某条最短路径上有n个点(除了自己),那么加上自己之后一共有n+1个点,由抽屉原理一定有两个点相同,所以存在环。
	queue<int> q;
	
	// 题目询问的是存不存在负环,起点不一定是1点,所以要把所有点代进去求解
	for (int i = 1; i <= n; i++)
	{
		q.push(i);
		st[i] = true;
	}

	while (q.size())
	{
		int t = q.front();
		q.pop();
		st[t] = false;

		for (int i = h[t]; i != -1; i = ne[i])
		{
			int j = e[i];

			if (dist[j] > dist[t] + w[i])
			{
				dist[j] = dist[t] + w[i];
				
				// 维护边的个数
				cnt[j] = cnt[t] + 1;

				// 如果从1号点到x的最短路中包含至少n个点(不包括自己),则说明存在环
				if (cnt[j] >= n)
				{
					return true;
				}

				if (!st[j])
				{
					q.push(j);
					st[j] = true;
				}
			}
		}
	}

	return false;
}

int main()
{
	memset(h, -1, sizeof h);

	cin >> n >> m;

	for (int i = 0; i < m; i++)
	{
		int a, b, c;
		cin >> a >> b >> c;
		insert(a, b, c);
	}

	if (spfa())
	{
		cout << "Yes" << endl;
	}
	else
	{
		cout << "No" << endl;
	}

	return 0;
}

Floyd算法

#include <iostream>

using namespace std;


/*

弗洛伊德算法
适用:多源汇最短路,无负环

*/

const int N = 510;

int n, m;
int dist[N][N]; // dist[i][j] 表示从i到j的最短距离

void floyd()
{
	// 三重循环
	for (int k = 1; k <= n; k++)
	{
		for (int i = 1; i <= n; i++)
		{
			for (int j = 1; j <= n; j++)
			{
				dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j]);
			}
		}
	}
}

int main()
{
	cin >> n >> m;


	// 初始化距离
	for (int i = 1; i <= n; i++)
	{
		for (int j = 1; j <= n; j++)
		{
			if (i == j)
			{
				dist[i][j] = 0;
			}
			else
			{
				dist[i][j] = 0x3f3f3f3f;
			}
		}
	}

	for (int i = 0; i < m; i++)
	{
		int a, b, c;
		cin >> a >> b >> c;

		dist[a][b] = min(dist[a][b], c);
	}

	floyd();

	int i, j;
	cin >> i >> j;

	// 无最短路不一定==0x3f3f3f3f,因为在循环过程中,即使无最短路,0x3f3f3f3f也可能被更新(负权边)
	if (dist[i][j] > 0x3f3f3f3f / 2)
	{
		cout << "impossible" << endl;
	}
	else
	{
		cout << dist[i][j] << endl;
	}
	return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值