【蓝桥杯】k倍区间

k倍区间

给定一个长度为 N N N 的数列, A 1 , A 2 , ⋯ A N A_1, A_2, \cdots A_N A1,A2,AN ,如果其中一段连续的子序列 A i , A i + 1 , ⋯ A j A_i,A_i+1, \cdots A_j Ai,Ai+1,Aj( i ≤ j i \leq j ij ) 之和是 K K K 的倍数,我们就称这个区间 [ i , j ] [i, j] [i,j] K K K 倍区间。

你能求出数列中总共有多少个 K K K 倍区间吗?

输入描述
第一行包含两个整数 N N N K K K( 1 ≤ N , K ≤ 1 0 5 1 \leq N,K \leq 10^5 1N,K105)。

以下 N 行每行包含一个整数 A i A_i Ai( 1 ≤ A i ≤ 1 0 5 1 \leq A_i \leq 10^5 1Ai105)

输出描述
输出一个整数,代表 K K K 倍区间的数目。

输入输出样例
示例
输入

5 2
1
2
3
4
5

输出

6
思路
  • 暴力枚举的话,最好都是 O ( n 2 ) O(n^2) O(n2) 的复杂度,会超时
  • k k k 的倍数,换句话说就是能被 k k k 整除
  • 整除的话,一个是按照定义来, a   m o d   k = 0 a\ mod\ k=0 a mod k=0,就表示 k k k 能整除 a a a,还有就是同余:假设 a   m o d   k = r , b   m o d   k = r , a ≠ b a\ mod\ k=r , b\ mod\ k=r,a \not=b a mod k=r,b mod k=r,a=b成立,那么容易知道, ∣ a − b ∣   m o d   k = 0 |a-b|\ mod\ k=0 ab mod k=0
  • 这道题要求的是关于区间和是否能整除 k k k 的问题
  • 对于两个模 k k k 同余的数,它们的差(正差)一定能被 k k k 整除。那么扩展一下,对于 n n n 个两两不同的模 k k k 同余的数,从中任意取出两个数,它们的正差都是能被 k k k 整除的,那么就会有 C n 2 C_{n}^{2} Cn2 种不同的组合
  • 有上面的启发,可以将每个区间抽象成它的区间和(一个数),那么求得同余的 n n n 个数之后,再用组合数就可计算出整除方法数,由此就可求出题目要求的 k k k 倍区间
  • 区间和,如果每次都累加的话,那么就太费时了,所以这里用前缀和
  • 对于每个数,都求出它的前缀和,并且求出这个前缀和模 k k k 的余数,之后统计每个余数的个数,再用 C n 2 C_{n}^{2} Cn2 来计算个数,但是一个前缀和如果模 k k k 之后等于0的话,本身就是一个 k k k 倍区间,所以还要加余数为0的个数,那么就得到了 k k k 倍区间的个数了,问题解决
代码如下
#include <iostream>
#include <vector>
#define ll long long
using namespace std;

vector<int> a;//模k之后余数为x的个数数组
ll tmp_sum;//前缀和,这道题不需要数组
int n, k;//题目描述的变量

void solve() {
    scanf("%d%d", &n, &k);
    a.resize(k, 0);//由于模k之后余数只能是[0,k-1],所以开k个空间即可
    int i = 0, tmp = 0;//临时变量
    while (n--) {
        scanf("%d", &tmp);
        tmp_sum += tmp;
        a[tmp_sum % k]++;
    }
    /*
    由于n(n+1)/2 - n(n-1)/2 = n,所以可以直接把答案数初始化为a[0]
    也可以把a[0]加1,但是答案数初始化为0
    */
    ll ans = a[0];
    for (i = 0; i < k; i++) {
        ans += (ll)a[i] * (a[i] - 1) / 2;  //此处要转为long long,否则会出错
    }
    printf("%lld\n", ans);
}

int main(void) {
    solve();
    return 0;
}

另一种代码的写法,见第一个版本代码中间的注释:

#include <iostream>
#include <vector>
#define ll long long
using namespace std;

vector<int> a;
ll tmp_sum;
int n, k;

void solve() {
    scanf("%d%d", &n, &k);
    a.resize(k, 0);
    int i = 0, tmp = 0;
    a[0] = 1;//理由见第一个版本的代码
    while (n--) {
        scanf("%d", &tmp);
        tmp_sum += tmp;
        a[tmp_sum % k]++;
    }
    ll ans = 0;
    for (i = 0; i < k; i++) {
        ans += (ll)a[i] * (a[i] - 1) / 2;  //此处要转为long long,否则会出错
    }
    printf("%lld\n", ans);
}

int main(void) {
    solve();
    return 0;
}
  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

渴望力量的猴子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值