金明的预算方案
Description
金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱就行”。今天一早,金明就开始做预算了,他把想买的物品分为两类:主件与附件,附件是从属于某个主件的,下表就是一些主件与附件的例子:
主件 附件
电脑 打印机,扫描仪
书柜 图书
书桌 台灯,文具
工作椅 无
如果要买归类为附件的物品,必须先买该附件所属的主件。每个主件可以有0个、1个或2个附件。附件不再有从属于自己的附件。金明想买的东西很多,肯定会超过妈妈限定的N元。于是,他把每件物品规定了一个重要度,分为5等:用整数1~5表示,第5等最重要。他还从因特网上查到了每件物品的价格(都是10元的整数倍)。他希望在不超过N元(可以等于N元)的前提下,使每件物品的价格与重要度的乘积的总和最大。
设第j件物品的价格为v[j],重要度为w[j],共选中了k件物品,编号依次为j_1,j_2,……,j_k,则所求的总和为:
v[j_1]w[j_1]+v[j_2]*w[j_2]+ …+v[j_k]*w[j_k]。(其中为乘号)
请你帮助金明设计一个满足要求的购物单。
Input
第1行,为两个正整数,用一个空格隔开:
N m
其中N(<32000)表示总钱数,m(<60)为希望购买物品的个数。)
从第2行到第m+1行,第j行给出了编号为j-1的物品的基本数据,每行有3个非负整数
v p q
(其中v表示该物品的价格(v<10000),p表示该物品的重要度(1~5),q表示该物品是主件还是附件。如果q=0,表示该物品为主件,如果q>0,表示该物品为附件,q是所属主件的编号)
Output
输出一个正整数,为不超过总钱数的物品的价格与重要度乘积的总和的最大值 (<200000)。
Sample Input
1000 5
800 2 0
400 5 1
300 5 1
400 3 0
500 2 0
Sample Output
2200
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int INF=0x3f3f3f3f;
const int MAX_M=65;
const int MAX_N=3.2e4+5;
const int MAX_V=5e2+5;
int dp[MAX_N];
int a[MAX_M],b[MAX_M],da[MAX_M][3],db[MAX_M][3],v,p,q;
int main(){
int n,m;
while(scanf("%d%d",&n,&m)!=EOF){
//初始化
memset(dp,0,sizeof(dp));
memset(da,0,sizeof(da));
memset(db,0,sizeof(db));
memset(a,0,sizeof(a));
memset(b,0,sizeof(b));
for(int i=1;i<=m;i++){
scanf("%d%d%d",&v,&p,&q);
if(q){
da[q][0]++;
da[q][da[q][0]]=v;
db[q][da[q][0]]=v*p;
}else{
a[i]=v;
b[i]=v*p;
}
}
for(int i=1;i<=m;i++)
for(int j=n;a[i]!=0&&j>=a[i];j-=10){
//可能选主件
dp[j]=max(dp[j],dp[j-a[i]]+b[i]);
//可能选主件和附件一
if(j>=a[i]+da[i][1])
dp[j]=max(dp[j],dp[j-a[i]-da[i][1]]+b[i]+db[i][1]);
//可能选主件和附件二
if(j>=a[i]+da[i][2])
dp[j]=max(dp[j],dp[j-a[i]-da[i][2]]+b[i]+db[i][2]);
//可能选主见和附件一和附件二
if(j>=a[i]+da[i][1]+da[i][2])
dp[j]=max(dp[j],dp[j-a[i]-da[i][1]-da[i][2]]+b[i]+db[i][1]+db[i][2]);
}
printf("%d\n",dp[n]);
}
return 0;
}