【秋招笔试题】米厂-树博弈

在这里插入图片描述
较为简单的树上博弈论,拓扑排序到x就停下来,其他节点继续拓扑。然后按拓扑下来的节点的奇偶判定答案即可。

#include <iostream>
#include <vector>
#include <queue>
using namespace std;

string solve_game(int n, int x, const vector<pair<int, int>>& edges) {
    vector<vector<int>> graph(n + 1);
    vector<int> degree(n + 1, 0);

    for (const auto& edge : edges) {
        int u = edge.first, v = edge.second;
        graph[u].push_back(v);
        graph[v].push_back(u);
        degree[u]++;
        degree[v]++;
    }


    queue<int> q;
    vector<bool> removed(n + 1, false);

    for (int i = 1; i <= n; ++i) {
        if (degree[i] == 1) {
            q.push(i);
        }
    }
    if (degree[x] == 1) return "Xiaoyo";

    int cnt = 0;
    int ok = 0;
    while (!q.empty()) {
        int node = q.front();
        q.pop();
        removed[node] = true;
        if (node == x){
            ok = 1;
            continue;
        }
        cnt ++;
        for (int neighbor : graph[node]) {
            if (!removed[neighbor]) {
                degree[neighbor]--;
                degree[node] --;
                if (degree[neighbor] == 1) {
                    q.push(neighbor);
                }
            }
        }
        if (!removed[node] && degree[node] == 1) q.push(node);
    }
    if (ok){
        if (cnt & 1) return "Pyrmont";
        else return "Xiaoyo";
    }
    return "Draw";
}

int main() {
    std::ios::sync_with_stdio(false);
    cin.tie(0); cout.tie(0);

    int T;
    cin >> T;

    vector<string> results;

    while (T--) {
        int n, x;
        cin >> n >> x;

        vector<pair<int, int>> edges(n);
        for (int i = 0; i < n; ++i) {
            int u, v;
            cin >> u >> v;
            edges[i] = {u, v};
        }

        results.push_back(solve_game(n, x, edges));
    }

    for (const string& result : results) {
        cout << result << endl;
    }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值