哈夫曼树及其应用
哈夫曼树
哈夫曼树又称最优二叉树,它是树的带权路径长度值最小的一棵二叉树,可用于构造最优编码,在信息传输,数据压缩等方面有着广泛的应用。
相关概念
-
路径:树中一个结点到另一个结点之间的分支序列。
-
路径长度:路径上分支的条数。
-
结点的权:给结点赋予的数值。
-
带权路径长度:结点的权值就是与该结点到数根间路径长度的乘积。
-
树的带权路径长度:树中所有叶子结点的带权路径长度之和,计为:WPL
- 最优二叉树:在叶子个数n以及各叶子权值Wi确定的条件下,树的带权路径长度WPL值最小的二叉树称为最优二叉树。
(哈夫曼依据最优二叉树的特点:权值越大,离根越近!给出了构造方法,因此最优二叉树又称哈夫曼树。)
哈夫曼树的建立
- 初始化:按给定的n个权值{w1,w2,…wn},构造n棵二叉树的集合F={T1,T2,…Tn},其每棵二叉树只含一个权值为wi的根结点,左右子树为空树。
- 在F中选取根结点权值最小的两棵二叉树,分别作为左右子树构造一颗新的二叉树,并置新二叉树根结点的权值为其左右子树根结点的权值之和。
- 从F中删除选中的两颗树,并插入刚生成的新树。
- 重复2,3两步,直至F中只含一棵树为止。
哈夫曼算法的实现
对于给定的N个叶子节点,构造哈夫曼树,其最终总的结点数一定是:2N-1。
可选用静态链表作为存储结构。即用哈2N-1个元素的数组来存储哈夫曼树,结点间的父子关系用下标来指示。
在使用哈夫曼树进行编码和编译时,既要用结点的双亲信息,有要用结点的孩子信息,所以采用静态三叉链表存储哈夫曼树。
#define N 20
#define M 2*N-1
typedef struct
{
int weight;
int parent;
int LChild;
int RChild;
}HTNode,HuffmanTree[M+1];
哈夫曼算法:
void