题目描述
有一个石子归并的游戏。最开始的时候,有n堆石子排成一列,目标是要将所有的石子合并成一堆。合并规则如下:
1.每一次可以合并相邻位置的两堆石子
2.每次合并的代价为所合并的两堆石子的重量之和
求出最小的合并代价。
样例
输入: [4, 1, 1, 4]
输出: 18
解释:
1.合并第二堆和第三堆 => [4, 2, 4], score = 2
2.合并前两堆 => [6, 4],score = 8
3.合并剩余的两堆 => [10], score = 18
题解
//记忆化搜索
public class Solution {
/**
* @param A an integer array
* @return an integer
*/
int search(int l, int r, int[][] f, int[][] visit, int[][] sum) {
if (visit[l][r] == 1)
return f[l][r];
if (l == r) {
visit[l][r] = 1;
return f[l][r];
}
f[l][r] = Integer.MAX_VALUE;
for (int k = l; k < r; k++) {
f[l][r] = Math.min(f[l][r], search(l, k, f, visit, sum) + search(k + 1, r, f, visit, sum) + sum[l][r]);
}
visit[l][r] = 1;
return f[l][r];
}
public int stoneGame(int[] A) {
if (A == null || A.length == 0) {
return 0;
}
int n = A.length;
// initialize
int[][] f = new int[n][n];
int[][] visit = new int[n][n];
for (int i = 0; i < n; i++) {
f[i][i] = 0;
}
// preparation
int[][] sum = new int[n][n];
for (int i = 0; i < n; i++) {
sum[i][i] = A[i];
for (int j = i + 1; j < n; j++) {
sum[i][j] = sum[i][j - 1] + A[j];
}
}
return search(0, n-1, f, visit, sum);
}
}