牛客寒假营-爆炸的符卡洋洋洒洒-(数字类dp)

博客内容讲述了如何使用动态规划解决一个物品选择的问题,其中物品具有攻击和消耗属性,目标是找到当消耗总和为给定数的倍数时,攻击总和的最大值。博主在尝试过程中经历了错误和思考,最终确定了正确解题思路:初始化dp数组并用01背包的方法求解。代码中展示了详细的动态规划实现过程。
摘要由CSDN通过智能技术生成

I

题意:
就是给你n个物品,有攻击和消耗。可以选择一些物品,当消耗的总和是m的倍数的时候,攻击总和的最大值是多少。

思考:
刚开始看了看,感觉是map题,实际上不是。然后想到以前的那个两个数加在一起是m的倍数啥的,就想到了%m。妈的,然后总想着是两个数组合在一起,然后贪心这样做,错了几次。然后发现不对,应该是dp,那这就和之前做过的几次数字类dp很像,但是又出问题了,初始化的时候没考虑当前dp的定义是啥,当前余数是恰好为m的时候,所以初始化除了00,别的都要是非法状态。
其实也可以先把所有的数取余之后,把消耗的能量加起来为ans,那么就是背包容量为ans的,01背包,dp含义定义为消耗能量恰好为j的时候的最大值。然后最后再遍历一遍ans,当且仅当i是m的倍数的时候可以更新答案。

代码:

int T,n,m,k;
PII va[N];
int dp[M][M];

signed main()
{
	IOS;
	cin>>n>>m;
	for(int i=1;i<=n;i++) cin>>va[i].fi>>va[i].se;
	for(int i=1;i<=n;i++) va[i].fi %= m;
	mem(dp,-0x3f);
	dp[0][0] = 0;
	for(int i=1;i<=n;i++)
	{
		for(int j=0;j<m;j++) dp[i][j] = dp[i-1][j]; //如果不选
		for(int j=0;j<m;j++) //这些状态如果选,去更新可以选的状态
		dp[i][(va[i].fi+j)%m] = max(dp[i][(va[i].fi+j)%m],dp[i-1][j]+va[i].se);
	}
	if(dp[n][0]==0) cout<<-1;
	else cout<<dp[n][0];
	return 0;
}

总结:
别太慌,思考好再交题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值