进阶岛-第2关-L2G2000-Lagent 自定义你的 Agent 智能体

1、安装环境

安装环境出现错误:

ClobberError: This transaction has incompatible packages due to a shared path.
  packages: defaults/linux-64::intel-openmp-2023.1.0-hdb19cb5_46306, defaults/linux-64::llvm-openmp-14.0.6-h9e868ea_0
  path: 'lib/libomptarget.so'

 解决办法:

conda clean --all
conda update --all

通过源码安装的方式安装 lagent。

# 创建目录以存放代码
mkdir -p /root/agent_camp4
cd /root/agent_camp4
git clone https://github.com/InternLM/lagent.git
cd lagent && git checkout e304e5d && pip install -e . && cd ..
pip install griffe==0.48.0

 安装torch要科学上网!!!

2、Lagent框架中Agent的使用

接下来,我们将使用 Lagent 框架,一步步搭建并使用基于 InternLM2.5 的 Web Demo,体验其强大的智能体功能。

首先,需要申请 API 授权令牌 ,请前往 书生·浦语 API 文档 申请并获取 Authorization 令牌,将其填入后续代码的 YOUR_TOKEN_HERE 变量中。

创建一个代码example,创建agent_api_web_demo.py,在里面实现我们的Web Demo:

conda activate lagent
cd /root/agent_camp4/lagent/examples
touch agent_api_web_demo.py

Action,也称为工具,Lagent中集成了很多好用的工具,提供了一套LLM驱动的智能体用来与真实世界交互并执行复杂任务的函数,包括谷歌文献检索、Arxiv文献检索、Python编译器等。具体可以查看文档

让我们来体验一下,让LLM调用Arxiv文献检索这个工具:

agent_api_web_demo.py中写入下面的代码,这里利用 GPTAPI 类,该类继承自 BaseAPILLM,封装了对 API 的调用逻辑,然后利用Streamlit启动Web服务:

import copy
import os
from typing import List
import streamlit as st
from lagent.actions import ArxivSearch
from lagent.prompts.parsers import PluginParser
from lagent.agents.stream import INTERPRETER_CN, META_CN, PLUGIN_CN, AgentForInternLM, get_plugin_prompt
from lagent.llms import GPTAPI

class SessionState:
    """管理会话状态的类。"""

    def init_state(self):
        """初始化会话状态变量。"""
        st.session_state['assistant'] = []  # 助手消息历史
        st.session_state['user'] = []  # 用户消息历史
        # 初始化插件列表
        action_list = [
            ArxivSearch(),
        ]
        st.session_state['plugin_map'] = {action.name: action for action in action_list}
        st.session_state['model_map'] = {}  # 存储模型实例
        st.session_state['model_selected'] = None  # 当前选定模型
        st.session_state['plugin_actions'] = set()  # 当前激活插件
        st.session_state['history'] = []  # 聊天历史
        st.session_state['api_base'] = None  # 初始化API base地址

    def clear_state(self):
        """清除当前会话状态。"""
        st.session_state['assistant'] = []
        st.session_state['user'] = []
        st.session_state['model_selected'] = None


class StreamlitUI:
    """管理 Streamlit 界面的类。"""

    def __init__(self, session_state: SessionState):
        self.session_state = session_state
        self.plugin_action = []  # 当前选定的插件
        # 初始化提示词
        self.meta_prompt = META_CN
        self.plugin_prompt = PLUGIN_CN
        self.init_streamlit()

    def init_streamlit(self):
        """初始化 Streamlit 的 UI 设置。"""
        st.set_page_config(
            layout='wide',
            page_title='lagent-web',
            page_icon='./docs/imgs/lagent_icon.png'
        )
        st.header(':robot_face: :blue[Lagent] Web Demo ', divider='rainbow')

    def setup_sidebar(self):
        """设置侧边栏,选择模型和插件。"""
        # 模型名称和 API Base 输入框
        model_name = st.sidebar.text_input('模型名称:', value='internlm2.5-latest')
        
        # ================================== 硅基流动的API ==================================
        # 注意,如果采用硅基流动API,模型名称需要更改为:internlm/internlm2_5-7b-chat 或者 internlm/internlm2_5-20b-chat
        # api_base = st.sidebar.text_input(
        #     'API Base 地址:', value='https://api.siliconflow.cn/v1/chat/completions'
        # )
        # ================================== 浦语官方的API ==================================
        api_base = st.sidebar.text_input(
            'API Base 地址:', value='https://internlm-chat.intern-ai.org.cn/puyu/api/v1/chat/completions'
        )
        # ==================================================================================
        # 插件选择
        plugin_name = st.sidebar.multiselect(
            '插件选择',
            options=list(st.session_state['plugin_map'].keys()),
            default=[],
        )

        # 根据选择的插件生成插件操作列表
        self.plugin_action = [st.session_state['plugin_map'][name] for name in plugin_name]

        # 动态生成插件提示
        if self.plugin_action:
            self.plugin_prompt = get_plugin_prompt(self.plugin_action)

        # 清空对话按钮
        if st.sidebar.button('清空对话', key='clear'):
            self.session_state.clear_state()

        return model_name, api_base, self.plugin_action

    def initialize_chatbot(self, model_name, api_base, plugin_action):
        """初始化 GPTAPI 实例作为 chatbot。"""
        token = os.getenv("token")
        if not token:
            st.error("未检测到环境变量 `token`,请设置环境变量,例如 `export token='your_token_here'` 后重新运行 X﹏X")
            st.stop()  # 停止运行应用
            
        # 创建完整的 meta_prompt,保留原始结构并动态插入侧边栏配置
        meta_prompt = [
            {"role": "system", "content": self.meta_prompt, "api_role": "system"},
            {"role": "user", "content": "", "api_role": "user"},
            {"role": "assistant", "content": self.plugin_prompt, "api_role": "assistant"},
            {"role": "environment", "content": "", "api_role": "environment"}
        ]

        api_model = GPTAPI(
            model_type=model_name,
            api_base=api_base,
            key=token,  # 从环境变量中获取授权令牌
            meta_template=meta_prompt,
            max_new_tokens=512,
            temperature=0.8,
            top_p=0.9
        )
        return api_model

    def render_user(self, prompt: str):
        """渲染用户输入内容。"""
        with st.chat_message('user'):
            st.markdown(prompt)

    def render_assistant(self, agent_return):
        """渲染助手响应内容。"""
        with st.chat_message('assistant'):
            content = getattr(agent_return, "content", str(agent_return))
            st.markdown(content if isinstance(content, str) else str(content))


def main():
    """主函数,运行 Streamlit 应用。"""
    if 'ui' not in st.session_state:
        session_state = SessionState()
        session_state.init_state()
        st.session_state['ui'] = StreamlitUI(session_state)
    else:
        st.set_page_config(
            layout='wide',
            page_title='lagent-web',
            page_icon='./docs/imgs/lagent_icon.png'
        )
        st.header(':robot_face: :blue[Lagent] Web Demo ', divider='rainbow')

    # 设置侧边栏并获取模型和插件信息
    model_name, api_base, plugin_action = st.session_state['ui'].setup_sidebar()
    plugins = [dict(type=f"lagent.actions.{plugin.__class__.__name__}") for plugin in plugin_action]

    if (
        'chatbot' not in st.session_state or
        model_name != st.session_state['chatbot'].model_type or
        'last_plugin_action' not in st.session_state or
        plugin_action != st.session_state['last_plugin_action'] or
        api_base != st.session_state['api_base']    
    ):
        # 更新 Chatbot
        st.session_state['chatbot'] = st.session_state['ui'].initialize_chatbot(model_name, api_base, plugin_action)
        st.session_state['last_plugin_action'] = plugin_action  # 更新插件状态
        st.session_state['api_base'] = api_base  # 更新 API Base 地址

        # 初始化 AgentForInternLM
        st.session_state['agent'] = AgentForInternLM(
            llm=st.session_state['chatbot'],
            plugins=plugins,
            output_format=dict(
                type=PluginParser,
                template=PLUGIN_CN,
                prompt=get_plugin_prompt(plugin_action)
            )
        )
        # 清空对话历史
        st.session_state['session_history'] = []

    if 'agent' not in st.session_state:
        st.session_state['agent'] = None

    agent = st.session_state['agent']
    for prompt, agent_return in zip(st.session_state['user'], st.session_state['assistant']):
        st.session_state['ui'].render_user(prompt)
        st.session_state['ui'].render_assistant(agent_return)

    # 处理用户输入
    if user_input := st.chat_input(''):
        st.session_state['ui'].render_user(user_input)

        # 调用模型时确保侧边栏的系统提示词和插件提示词生效
        res = agent(user_input, session_id=0)
        st.session_state['ui'].render_assistant(res)

        # 更新会话状态
        st.session_state['user'].append(user_input)
        st.session_state['assistant'].append(copy.deepcopy(res))

    st.session_state['last_status'] = None


if __name__ == '__main__':
    main()

在终端中记得先将获取的API密钥写入环境变量,然后再输入启动命令:

export token='your_token_here'
streamlit run agent_api_web_demo.py

在等待server启动成功后,我们在 本地 的 PowerShell 中输入如下指令来进行端口映射:

ssh -CNg -L 8501:127.0.0.1:8501 root@ssh.intern-ai.org.cn -p <你的 SSH 端口号>

接下来,在本地浏览器中打开 http://localhost:8501/

页面的侧边栏有三个内容,分别是模型名称、API Base地址和插件选择,其中如果采用浦语的API,模型名称可以选择internlm2.5-latest,默认指向最新发布的 InternLM2.5 系列模型,当前指向internlm2.5-20b-0719,窗口长度是32K,最大输出4096Tokens。

未调用ArxivSearch插件:

 调用了之后:

3、制作一个属于自己的Agent

以实时天气查询为例子,通过调用和风天气API,自定义一个自己的Agent。

首先,为了使用和风天气的 API 服务,你需要获取一个 API Key。请按以下步骤操作:

(1)访问 和风天气 API 文档(需要注册账号)。

(2)点击页面右上角的“控制台”。

(3)在控制台中,点击左侧的“项目管理”,然后点击右上角“创建项目”。

(4)输入项目名称(可以使用“Lagent”),选择免费订阅,并在凭据设置中创建新的凭据。

(5)创建后,回到“项目管理”页面,找到你的 API Key 并复制保存。

laegnt/actions文件夹下面创建一个天气查询的工具程序。

conda activate lagent
cd /root/agent_camp4/lagent/lagent/actions
touch weather_query.py

将下面的代码复制进去,注意要将刚刚申请的API Key在终端中输入进去:

export weather_token='your_token_here'

注意修改的地方

4、Multi-Agents博客写作系统的搭建

在这一节中,将使用 Lagent 来构建一个多智能体系统 (Multi-Agent System),展示如何协调不同的智能代理完成内容生成和优化的任务。我们的多智能体系统由两个主要代理组成:

(1)内容生成代理:负责根据用户的主题提示生成一篇结构化、专业的文章或报告。

(2)批评优化代理:负责审阅生成的内容,指出不足,推荐合适的文献,使文章更加完善。

Multi-Agents博客写作系统的流程图如下:

首先,创建一个新的 Python 文件 multi_agents_api_web_demo.py,并进入 lagent 环境:

conda activate lagent
cd /root/agent_camp4/lagent/examples
touch multi_agents_api_web_demo.py

代码填入multi_agents_api_web_demo.py

运行streamlit run multi_agents_api_web_demo.py,启动Web服务 输入话题

Step 1:写作者根据用户输入生成初稿。

Step 2:批评者对初稿进行评估,提供改进建议和文献推荐(通过关键词触发 Arxiv 文献搜索)。

Step 3:写作者根据批评意见对内容进行改进。

5、优秀任务:部署到hugging face或魔搭社区

注意这个地方要放入自己的浦语API

地址:Lagent - a Hugging Face Space by lt676767

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值