最近,正好有空,就想着把莫烦讲解的强化学习再复习一遍,我就边看边在这做笔记。而且我发现虽然有很多人分析莫烦的代码,但不够详细,不能让入门选手开盖即食,所以我对代码的每一行进行了注释。还有特别对于刚学习python的同学,不了解python的函数的用法,就很烦,很耗费时间去查找,所以我在文章末尾也添加了各种函数的链接,方便学习。
Q-learning
import numpy as np
import pandas as pd
import time # 用来控制探索者速度有多快
np.random.seed(2) # 随机种子
N_STATES = 6 # 一维世界的宽度
ACTIONS = ['left', 'right'] # 探索者的可用动作,在一维世界只有左右
EPSILON = 0.9 # 贪婪度,即探索者有90%的情况会按照Q表的最优值选择行为,10%的时间会随机选择行为
ALPHA = 0.1 # 学习率,用来决定误差有多少需要被学习的,ALPHA是一个小于1的数
GAMMA = 0.9 # 奖励递减值,表示对未来reward的衰减值
MAX_EPISODES = 13 # 最大回合数
FRESH_TIME = 0.001 # 移动间隔时间
#DataFrame是Python中Pandas库中的一种数据结构,它类似excel,是一种二维表。
#建立q表
def build_q_table(n_states, actions):
table = pd.DataFrame(
np.zeros((n_states, len(actions))), # q_table为一个6x2的表格,并初始化值都为0
columns=actions, # actions's name
)
# print(table) # show table
'''
left right
0 0.0 0.0
1 0.0 0.0
2 0.0 0.0
3 0.0 0.0
4 0.0 0.0
5 0.0 0.0
'''
return table
def choose_action(state, q_table):
# 根据输入的状态及q表,输出动作
state_actions = q_table.iloc[state, :] # iloc函数提取行数据
if (np.random.uniform() > EPSILON) or ((state_actions == 0).all()): # 随机数大于0.9(即10%的时间会随机选择行为)或q表中某状态下左右两个动作的值都为0,此时随机选择动作
action_name = np.random.choice(ACTIONS)
else: # 随机数小于等于0.9(即探索者有90%的情况会按照Q表的最优值选择行为)
action_name = state_actions.idxmax() # 在q表中取得该状态下值最大的动作的name
return action_name
def get_env_feedback(S, A):
# 探索者与环境互动,由当前的状态与动作获取奖励及探索者的下一状态
if A == 'right': # 探索者当前状态下向右移动
if S == N_STATES - 2: # 探索者当前状态如果是到达宝藏的前一步,则向右移动一步找到宝藏,获得奖励
S_ = 'terminal'
R = 1
else: # 探索者当前状态不是到达宝藏的前一步,则向右移动一步,奖励为0
S_ = S + 1
R = 0
else: # 探索者当前状态下向左移动
R = 0 # 因为宝藏在最右边,探索者当前状态下向左移动,必定拿不到宝藏,所以奖励为0
if S == 0:
S_ = S # 探索者当前状态如果是起始点,不能再向左移动,则保持不动
else:
S_ = S - 1 # 探索者当前状态不是起始点,向左移动一步
return S_, R
#环境的更新
def update_env(S, episode, step_counter):
# This is how environment be updated
env_list = ['-']*(N_STATES-1) + ['T'] # '---------T' our environment
if S == 'terminal':
interaction = 'Episode %s: total_steps = %s' % (episode+1, step_counter)
print('\r{}'.format(interaction), end='')
time.sleep(2) # 延时两秒
print('\r ', end='')
else:
env_list[S] = 'o'
interaction = ''.join(env_list)
print('\r{}'.format(interaction), end='')
time.sleep(FRESH_TIME)
def rl():
# q-learning的主要部分
q_table = build_q_table(N_STATES, ACTIONS) # 建立一个q表,且初始值都为0
for episode in range(MAX_EPISODES): # 训练 MAX_EPISODES 个回合
step_counter = 0 # 一个回合下,探索者找到宝藏总共移动的步数
S = 0 # 初始化探索者的状态(位置)
is_terminated = False
update_env(S, episode, step_counter) # 环境的更新
while not is_terminated: # 探索者进行探索
A = choose_action(S, q_table) # 选择动作
S_, R = get_env_feedback(S, A) # 根据当前的状态及动作,获取下一状态和奖励
q_predict = q_table.loc[S, A] # 根据当前的状态及动作,取出当前q表中对应位置的值,即Q估计
if S_ != 'terminal': # next state is not terminal
q_target = R + GAMMA * q_table.iloc[S_, :].max() # 计算下一状态不是 terminal 时的 Q现实
else:
q_target = R # next state is terminal
is_terminated = True # terminate this episode
q_table.loc[S, A] += ALPHA * (q_target - q_predict) # 对q表进行更新
S = S_ # move to next state
update_env(S, episode, step_counter+1) # 环境的更新
step_counter += 1 # 探索者移动的步数加1
return q_table
if __name__ == "__main__":
q_table = rl()
print('\r\nQ-table:\n')
print(q_table) # 输出训练完成后的q表
代码中出现的函数:
loc和iloc函数的用法