XD
外观
- 透明度
“外观”属性栏中第一个设置项为“透明度”。除了单击属性值直接键入准确值,还可以通过拖动右侧横向滑动控件,来调整所有对象的透明度。当控制点被拖动至最左侧时,当前对象的透明度为0;当控制点被拖动到最右侧时,当前对象透明度为100%。
直接在数字键盘上按数字键,可以快速地控制所选对象的透明度。按“2”键所选对象透明度变为20%。
透明度控制所选对象的所有属性的透明度,包括填充、描边、阴影及模糊。
- 圆角
在选中矩形的情况下,属性检查器中才会出现“圆角”设置栏,默认有两个按钮和一个可编辑框。
在选择第一个“所有圆角的半径相同”按钮时,矩形四个圆角半径大小相同,单机后面的数值可进入可编辑状态,此时可以通过在输入框里输入数值精确的设置圆角大小。
单击第二个“每个圆角半径不同”按钮时,右侧的可编辑框从一个变为四个,可以分别改变四个圆角大小。
- 填充纯色和渐变
选择一个对象后,可以给其设置填充颜色。填充颜色设置控件由复选框、颜色块、填充、吸管工具组成。
复选框:默认为选中状态,单击可以取消填充颜色,且复选框可以变为未选中状态,再次单击使用填充颜色,复选框变为选中状态。
吸管工具:可以从当前显示器上任意位置吸取颜色进行纯色填充
颜色块:可以调用拾色器设置颜色
拾色器中默认为纯色,第一个控件为“色域”。
ps
像素化滤镜细节修饰
“像素化”滤镜组中的滤镜工具将其中色彩相近的像素结成“块”,对其进行新的定义,借助像素化滤镜可以制作彩块、点状、晶体等多种特殊效果。ps中的“像素化滤镜效果组”包括“彩块化”、点状化、晶格化等七种滤镜。
- 彩块化
使相近颜色的像素形成相近颜色的像素块,图像整体的色彩对比不在强烈,整体色调更为柔和,画面整体类似于手绘效果。
原图
eg1:
- 彩色半调
彩色半调是一种ps中常用的滤镜,可以产生圆点效果
最大半径:调整半调网屏的最大半径
灰度图像:只有唯一的一个通道1
RGB格式图像:通道1、2、3、4,分别对应RGB通道、红色通道、绿色通道、蓝色通道
CMYK格式图像:使用全部通道,分别对应青色、洋红、黄色和黑色通道
eg2:
- 点状化
分解图像为任意分布的网点,作用效果类似于点状绘图,网点间的空白区域自动使用背景色进行填充
单元格大小:调整单元格大小,也就是图像分解成的网点大小,范围0-300,注意参数设置不要过大
eg 3:
- 晶格化
使用晶格化滤镜对原图像进行绘制。纯色结块的大小由属性栏中的“单元格尺寸”所决定,参数设置范围0-300
eg 4:
- 马赛克
“马赛克滤镜”也是图像处理当中经常会应用到的一种滤镜,可对重要部分进行隐藏,作用原理是将源图像中的颜色结为方块状,单元格越大,模糊效果也就越好
eg 5:
- 碎片
应用“碎片”滤镜后的图像效果类似于重影
eg 6:
- 铜板雕刻
使用黑白或是颜色完全饱和的网点图案重新绘制原图像,用线条重新生成图像,产生类似于金属版画的效果
eg 7:
图像修复
图像修复现在是计算机图形学和计算机视觉中的一大研究热点,ps也被应用到图像修复中,如去除多余部分,图片状态保持完美
- 去除照片瑕疵及多于场景
仿制图章工具的使用方法:
按键盘上的ALT键,在目标图像当中选中所要复制的区域,点击鼠标左键,此时仿制图章工具会完成对该部分的复制,松开ALT键,在图像的其他部分进行点击即可出现所复制的部分
在定义好要复制的区域以后新建图层,在新建图层里进行复制,执行菜单栏中的编辑-自由变换可以自由更改所复制部分的形状。
需要注意:使用仿制图章工具属性栏中的“对齐”,无论对图像进行了多少次的绘制,都可以重新定义一个全新的取样点,每次绘制时所使用的都是同一个样本像素
- 图像擦除效果:
擦抹类工具,即用于涂抹图像当中的某些部分,就像用橡皮擦擦去铅笔痕迹一样。在图片处理的过程中,直接使用橡皮擦工具的机会并不多,一般需要借助“蒙版工具”来使用
橡皮擦工具:依据鼠标移动路径执行擦除工作,一般有三种使用模式,分别是画笔、铅笔、块(块模式下橡皮擦工具为一个固定大小的正方形)。在普通图层上使用橡皮擦工具,被擦掉的部分将直接消失
背景橡皮擦工具基于色彩容差来使用,涂抹取样点以及容差范围内的像素,可直接应用于“背景图层”,随着这一工具在图层中展开应用,该图层也随之变换为普通图层
取样设置为“一次”时,背景橡皮擦只会抹去符合条件的部分,取样设置为“背景色版”意味着将背景色作为取样色进行使用
相比背景橡皮擦工具,魔术橡皮擦工具所得到的是透明区域,同时也可以直接作用于背景层。该工具与橡皮擦工具以及背景橡皮擦工具相比。最大的不同之处在于可直接对全图像进行操作。不透明度决定了删除程度。
c
(1)
int factorsum(int number)
{
int i;
int sum = 0;
if (number == 1 && number == 0)
{
return number;
}
for (i = 1; i <= number / 2; i++)
{
if (number % i == 0)
{
sum += i;
}
}
return sum;
}
void PrintPN(int m, int n)
{
int i, j, prime = 0;
for (i = m; i <= n; i++)
{
if (i == 0)
{
printf("%d = 0\n", i);
}
else
{
if (factorsum(i) == i)
{
printf("%d = 1", i);
prime = 1;
for (j = 2; j <= i / 2; j++)
{
if (i % j == 0)
{
printf(" + %d", j);
}
}
printf("\n");
}
}
}
if (prime == 0)
{
printf("No perfect number");
}
}
(2)
double mypow(double x, int n)
{
int i;
double a = 1.0;
for (i = 1; i <= n; i++)
{
a *= x;
}
return a;
}
(3)
int fib(int n)
{
if (n == 1 || n == 2)
{
return 1;
}
return fib(n - 1) + fib(n - 2);
}
void PrintFN(int m, int n)
{
int i = 1;
int cnt = 0;
while (fib(i) < m)
{
i++;
}
while (fib(i) <= n)
{
cnt++;
if (cnt == 1)
{
printf("%d", fib(i));
}
else
{
printf(" %d", fib(i));
}
i++;
}
if (cnt == 0)
{
printf("No Fibonacci number");
}
}
(4)
void printdigits( int n ){
if(n<10){
printf("%d\n",n);
}else{
printdigits(n/10);
printf("%d\n",n%10);
}
}```
(5)

```c
int IsSquare(int n)
{
int i;
int a;
int b = 0;
if (n == 0)
{
b = 1;
}
else
{
for (i = 1; i <= sqrt(n); i++)
{
if (n == i * i)
{
b = 1;
}
}
}
return (b);
}