dB、W、dBW和信噪比SNR的关系

dB、dBW、W是不同的单位。


解释一下他们的含义:
1. W是功率的单位,比如信号功率是1W。

2. dB(分贝)是倍数的单位,公式为
x dB = 10lg(倍数)
比如信号功率是噪声功率的1000倍,把1000代入上式,则x=10lg1000=30 dB,即1000倍是30分贝。

3. dBW是功率的绝对单位,公式为
x dBW = 10lg(功率 / 1W) (其中,功率的单位必须换算成W)
比如信号功率是1000W,则x=10lg(1000/1)= 30 dBW,即1000W是30dBW;
又比如信号功率是0.01W,则x=10lg(0.01/1)= -20 dBW,即0.01W是-20dBW。

4. 信噪比SNR (Signal Noise Ratio) 的单位是分贝,是信号功率和噪声功率的比值再求对数乘10,公式为
x dB = 10lg(信号功率/噪声功率)
比如信号功率是1W,噪声功率也是1W,则x=10lg(1/1)=0 dB,即此时的信噪比为0分贝;
又比如信号功率是10W,噪声功率是2W,则x=10lg(10/2)=6.99 dB,即此时的信噪比为6.99分贝。


dB、dBW、W 和信噪比的换算关系:
从信噪比换算到W,再换算到噪声的绝对功率dBW。设信号功率是Ps W,噪声功率是Pn W,
1. 首先,信噪比为
SNR = 10lg(Ps/Pn),单位是dB
2. 然后,信号功率和噪声功率的倍数为
Ps/Pn = 10^(SNR/10),没有单位;
3. 接着,如果知道信号功率是Ps W,那么噪声功率为
Pn = Ps / (10^(SNR/10)),单位是W
4. 最后,噪声的绝对功率为
Pn_dBW = 10lg(Pn) = 10lg(Ps/(10^(SNR/10))) = 10lg(Ps) - SNR,单位是dBW

最终得到噪声绝对功率和信噪比的关系式:
Pn_dBW = 10lg(Ps) - SNR
假设信号功率是1W,则噪声绝对功率Pn_dBW = - SNR,正好是负的信噪比。


这个公式用在MATLAB的wgn函数里比较方便,wgn函数用来产生高斯白噪声,定义为
wgn(m, n, p)
其中m和n为生成m*n的噪声矩阵,p是指定生成多大功率的噪声,单位默认是dBW。
比如,如果知道信噪比为3 dB,假设信号功率为1W,则噪声功率为0.5012W,噪声绝对功率为 - 3 dBW,再代入wgn函数里,
a = wgn(1000,1,-3)
即矩阵a是一个1000行1列的高斯噪声矩阵,它的功率(即方差)是var(a) = 0.5012W,它的均值是mean(a) = 0(因为高斯白噪声服从均值是0的正态分布)。

要使用`awgn`函数在方波信号上叠加高斯白噪声,首先我们需要创建一个方波信号,然后应用噪声并绘制原始信号噪声后的信号。这里我会一步步指导你。 **步骤1:创建方波信号** ```matlab % 设定采样率信号长度 fs = 1e3; % 1 kHz t = 0:1/fs:1 - 1/fs; % 时间轴 square_wave = square(2*pi*5*t); % 创建频率为5 Hz的方波 ``` **步骤2:定义SNR (-30 dB) 噪声功率** ```matlab % SNR in decibels (dB) snr_db = -30; % 将SNR转换为功率比 (Signal Power / Noise Power) signal_power_ratio = 10^(snr_db/10); % 假设信号功率 (Power in dBW) signal_power_dBW = 10; % 10 dBW % 计算噪声功率 (Power = Signal Power * Ratio) noise_power_dBW = signal_power_dBW - snr_db; noise_power_linear = 10^(noise_power_dBW/10); ``` **步骤3:叠加高斯白噪声** ```matlab % 加入噪声 noisy_square_wave = awgn(square_wave, snr_db, 'measured'); ``` **步骤4:绘制信号** ```matlab % 绘制原始方波噪声后的信号 figure; subplot(2,1,1); plot(t, square_wave, 'b', 'LineWidth', 1.5); title('Original Square Wave'); xlabel('Time (s)'); ylabel('Amplitude'); subplot(2,1,2); plot(t, noisy_square_wave, 'r', 'LineWidth', 1.5); title(['Noisy Square Wave (SNR = ') num2str(snr_db, '%.1f') ' dB']); xlabel('Time (s)'); ylabel('Amplitude'); ``` 现在我们完成了上述操作。对于第(2)部分,由于信号功率保持不变,但SNR已经确定,所以结果将是相同的噪声功率水平下的方波,噪声强度不会改变。 **对于第(3)部分:** 在不同情况下,噪声功率是根据SNR来调整的。原始信号功率(10 dBW)是固定的,而噪声功率随着SNR变化。当SNR更差(如-30 dB),噪声占的比例更大,因此方波信号会被淹没;反之,如果SNR提高,噪声相对减小,信号更容易被识别。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值