i912900hx和i912900h差距

本文对比了i9-12900HX和i7-12800HX这两款高性能笔记本CPU。i9型号拥有30MB三级缓存,最高5GHz频率,支持最大128GB DDR5内存,而i7型号则为25MB三级缓存,最高4.8GHz,配备32EU核显。对于需要极致性能的用户,i9可能更优;若对核显有需求,i7则是不错的选择。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

i9 12900HX采用10nm工艺 16 核 24 线程,30MB 三级缓存,最高 5GHz,(TDP) 55W支持最大内存 128GB 内存类型 DDR5 4800MHz,DDR4 3200MHz
笔记本cpu选i9 12900hx还是i7 12800hx这些点很重要 http://www.adiannao.cn/dy
​​i7 12800HX 采用10nm工艺 16 核 24 线程,25MB 三级缓存,最高 4.8GHz,32EU 核显
在这里插入图片描述

### 回答1: CNDG-FDTD方法是一种基于有限差分的数值求解方法,可以用于求解二维麦克斯韦方程组。对于一个精确解为 $u(x,y)$ 的问题,在有限差分的框架下,我们可以得到一个数值解 $u_{i,j}$,其中 $i$ $j$ 分别表示 $x$ $y$ 方向上的网格点。 在二维情况下,CNDG-FDTD方法的数值格式可以表示为: $\frac{E_{x,i,j}^{n+1/2}-E_{x,i,j}^{n-1/2}}{\Delta t}=\frac{1}{\epsilon_{i,j}}\frac{H_{z,i+1/2,j}^{n}-H_{z,i-1/2,j}^{n}}{\Delta x}$ $\frac{E_{y,i,j}^{n+1/2}-E_{y,i,j}^{n-1/2}}{\Delta t}=-\frac{1}{\epsilon_{i,j}}\frac{H_{z,i,j+1/2}^{n}-H_{z,i,j-1/2}^{n}}{\Delta y}$ $\frac{H_{z,i+1/2,j}^{n+1}-H_{z,i+1/2,j}^{n}}{\Delta t}=-\frac{1}{\mu_{i+1/2,j}}\frac{E_{y,i+1,j+1/2}^{n+1/2}-E_{y,i,j+1/2}^{n+1/2}}{\Delta x}+\frac{1}{\mu_{i+1/2,j}}\frac{E_{x,i+1/2,j+1}^{n+1/2}-E_{x,i+1/2,j}^{n+1/2}}{\Delta y}$ 其中,$E_{x,i,j}^{n+1/2}$、$E_{y,i,j}^{n+1/2}$ $H_{z,i+1/2,j}^{n+1}$ 分别表示电场磁场在 $(i,j)$ 点上的数值解,$\Delta t$、$\Delta x$ $\Delta y$ 分别表示时间空间上的步长,$\epsilon_{i,j}$ $\mu_{i+1/2,j}$ 分别表示介质在 $(i,j)$ $(i+1/2,j)$ 处的介电常数磁导率。 为了计算数值解误差收敛精度阶数,我们可以采用以下步骤: 1. 定义网格步长 $\Delta x$ $\Delta y$,以及时间步长 $\Delta t$。 2. 将精确解 $u(x,y)$ 在网格点上进行离散化,得到 $u_{i,j}$。 3. 在时间上进行迭代,通过有限差分的方法计算数值解 $u_{i,j}^{n}$。 4. 计算数值解误差 $e_{i,j}^{n}=|u_{i,j}^{n}-u_{i,j}|$。 5. 对于每个时间步长 $\Delta t$,计算误差的最大值 $e_{\max}^{n}=\max_{i,j} e_{i,j}^{n}$。 6. 对于不同的网格步长 $\Delta x$ $\Delta y$,以及不同的时间步长 $\Delta t$,重复步骤 3~5,得到不同的误差 $e_{\max}^{n}$。 7. 根据误差步长的关系,计算收敛精度阶数 $p$,可以使用以下公式: $p=\frac{\log(e_{\max}^{n}/e_{\max}^{n-1})}{\log(\Delta x/\Delta x')}$ 其中,$e_{\max}^{n-1}$ $\Delta x'$ 分别表示上一个时间步长网格步长。 下面是一个基于 Matlab 的数值求解示例代码: ```matlab % 二维麦克斯韦方程组CNDG-FDTD方法的数值解误差收敛精度阶数示例代码 % 定义问题参数 L = 1; % 区域长度 W = 1; % 区域宽度 c = 299792458; % 光速 f = 1e9; % 频率 lambda = c / f; % 波长 mu0 = pi * 4e-7; % 真空中的磁导率 epsilon0 = 8.854187817e-12; % 真空中的介电常数 epsilonr = 4; % 介质的相对介电常数 mur = 1; % 介质的相对磁导率 epsilon = epsilonr * epsilon0; % 介质的介电常数 mu = mur * mu0; % 介质的磁导率 sigma = 0; % 介质的电导率 dt = lambda / (6 * c); % 时间步长 dx = lambda / 10; % 网格步长 % 定义计算区域 nx = L / dx + 1; % x方向上的网格数 ny = W / dx + 1; % y方向上的网格数 x = linspace(-L/2, L/2, nx); % x方向上的坐标 y = linspace(-W/2, W/2, ny); % y方向上的坐标 [X, Y] = meshgrid(x, y); % 生成网格点 % 定义初始条件 Ez0 = sin(2 * pi * f * sqrt(X.^2 + Y.^2) / c); % 初始时刻的电场 % 进行时间迭代 Ez = Ez0; for n = 1:100 % 计算HxHy Hx = Hx - dt / mu * (diff(Ez, [], 2) / dx); Hy = Hy + dt / mu * (diff(Ez, [], 1) / dx); % 计算Ez Ez(:, 2:end-1) = Ez(:, 2:end-1) - dt / epsilon * (diff(Hy, [], 1) / dx); Ez(2:end-1, :) = Ez(2:end-1, :) + dt / epsilon * (diff(Hx, [], 2) / dx); % 边界处理 Ez(1, :) = 0; Ez(end, :) = 0; Ez(:, 1) = 0; Ez(:, end) = 0; % 计算精确解 u = sin(2 * pi * f * (n * dt) * sqrt(X.^2 + Y.^2) / c); % 计算误差 e = abs(Ez - u); emax(n) = max(e(:)); end % 计算收敛精度阶数 p = log(emax(2:end)./emax(1:end-1)) / log(dx/(dx/2)); % 绘制误差收敛精度阶数图像 figure; semilogy(dt*(1:100), emax); xlabel('Time'); ylabel('Error'); title('Error vs. Time'); grid on; figure; plot(dx*(1:99), p); xlabel('dx'); ylabel('p'); title('Convergence Order vs. dx'); grid on; ``` ### 回答2: 二维麦克斯韦方程组是描述电磁场行为的方程组,CNDG-FDTD是一种数值求解该方程组的方法。在使用CNDG-FDTD方法进行数值求解时,我们通常会遇到数值解误差的问题。 数值解误差是指通过数值方法求解得到的近似解与精确解之间的差距。误差的大小可以通过比较数值解精确解的差异来评估。 在MATLAB中,我们可以通过如下步骤来计算二维麦克斯韦方程组CNDG-FDTD方法的数值解误差并显示收敛精度阶数: 1. 首先,我们需要定义所使用的网格尺寸时间步长。这些参数会直接影响到数值解的准确性计算的速度。 2. 接下来,我们可以使用CNDG-FDTD方法求解二维麦克斯韦方程组。根据算法的特点,我们可以得到一个近似解。 3. 然后,我们可以根据问题的精确解(如果已知)来计算数值解精确解之间的差异。可以使用欧几里德范数或其他合适的误差准则来度量误差的大小。 4. 根据计算得到的误差,我们可以尝试使用不同的网格尺寸时间步长来重新计算数值解。对于每组参数,我们可以跟踪误差的变化情况。 5. 最后,我们可以绘制误差与网格尺寸或时间步长之间的关系图。通过分析图形的斜率,我们可以得到数值解的收敛精度阶数。 总结起来,通过在MATLAB中计算误差分析误差与网格尺寸或时间步长之间的关系,可以得到二维麦克斯韦方程组CNDG-FDTD方法的数值解误差以及收敛精度阶数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值