CNN卷积神经网络

CNN 的基本原理:

  1. 卷积层 – 主要作用是保留图片的特征
  2. 池化层 – 主要作用是把数据降维,可以有效的避免过拟合
  3. 全连接层 – 根据不同任务输出我们想要的结果

 卷积——提取特征

这个过程我们可以理解为我们使用一个过滤器(卷积核)来过滤图像的各个小区域,从而得到这些小区域的特征值。

在具体应用中,往往有多个卷积核,可以认为,每个卷积核代表了一种图像模式,如果某个图像块与此卷积核卷积出的值大,则认为此图像块十分接近于此卷积核。如果我们设计了6个卷积核,可以理解:我们认为这个图像上有6种底层纹理模式,也就是我们用6中基础模式就能描绘出一副图像。以下就是25种不同的卷积核的示例:

总结:卷积层的通过卷积核的过滤提取出图片中局部的特征,跟上面提到的人类视觉的特征提取类似。

 

池化层(下采样)——数据降维,避免过拟合

池化层简单说就是下采样,他可以大大降低数据的维度。其过程如下:

上图中,我们可以看到,原始图片是20×20的,我们对其进行下采样,采样窗口为10×10,最终将其下采样成为一个2×2大小的特征图。

之所以这么做的原因,是因为即使做完了卷积,图像仍然很大(因为卷积核比较小),所以为了降低数据维度,就进行下采样。

总结:池化层相比卷积层可以更有效的降低数据维度,这么做不但可以大大减少运算量,还可以有效的避免过拟合。

全连接层——输出结果

这个部分就是最后一步了,经过卷积层和池化层处理过的数据输入到全连接层,得到最终想要的结果。

经过卷积层和池化层降维过的数据,全连接层才能”跑得动”,不然数据量太大,计算成本高,效率低下。

典型的 CNN 并非只是上面提到的3层结构,而是多层结构,例如 LeNet-5 的结构就如下图所示:

卷积层 – 池化层- 卷积层 – 池化层 – 卷积层 – 全连接层

在了解了 CNN 的基本原理后,我们重点说一下 CNN 的实际应用有哪些。

CNN 的实际应用:

  1. 图片分类、检索
  2. 目标定位检测
  3. 目标分割
  4. 人脸识别
  5. 骨骼识别

猫狗分类实操 

 

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习模型,主要用于像识别和计算机视觉任务。它通过卷积层、池化层和全连接层等组件来提取像的特征,并进行分类或回归等任务。 CNN的基本原理是通过卷积操作来提取像的局部特征,然后通过池化操作来减小特征的尺寸和参数数量。卷积层使用一组可学习的滤波器(也称为卷积核)对输入像进行卷积操作,从而得到一系列特征。池化层则通过对特征进行降采样,保留主要特征并减少计算量。最后,通过全连接层将提取到的特征映射到输出类别。 CNN的优势在于它能够自动学习像的特征表示,而无需手动设计特征。此外,CNN还具有平移不变性和局部连接性等特点,使其在处理像数据时表现出色。 范例:<<引用:一般的卷积神经网络,输入像x,输出卷积后的特征F(x),一次性抽出所有的信息,梯度消失会出现,Res网络就说只学习残差即可。 [^1]。引用:VGGNet探索了卷积神经网络的深度与其性能之间的关系,通过反复堆叠33的小型卷积核和22的最大池化层,VGGNet成功地构筑了16~19层深的卷积神经网络。VGGNet相比之前state-of-the-art的网络结构,错误率大幅下降,并取得了ILSVRC 2014比赛分类项目的第2名和定位项目的第1名。 。引用:CNN的基本原理是通过卷积操作来提取像的局部特征,然后通过池化操作来减小特征的尺寸和参数数量。卷积层使用一组可学习的滤波器(也称为卷积核)对输入像进行卷积操作,从而得到一系列特征。池化层则通过对特征进行降采样,保留主要特征并减少计算量。最后,通过全连接层将提取到的特征映射到输出类别。[^3]。 CNN是一种深度学习模型,主要用于像识别和计算机视觉任务[^3]。它通过卷积层、池化层和全连接层等组件来提取像的特征,并进行分类或回归等任务[^3]。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值