自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(89)
  • 资源 (4)
  • 收藏
  • 关注

原创 染色法判定二分图

通俗来说就是 图中点通过移动能分成左右两部分,左侧的点只和右侧的点相连,右侧的点只和左侧的点相连。由于某个点染色成功不代表整个图就是二分图,因此只有某个点染色失败才能立刻break/return。若已经染色且颜色和相邻顶点的颜色相同则说明不是二分图,若颜色不同则继续判断。判断其相邻的顶点中,若未染色则将其染上和相邻顶点不同的颜色。遍历所有点,每次将未染色的点进行dfs, 默认染成1或者2。若邻边的点已经染色且与队头t的颜色相同, 则返回false。若邻边的点未染色则染上与队头t相反的颜色,并添加到队列。

2025-12-01 23:20:38 405

原创 Floyd&Prim&Kruskal-java实现

在下面代码中,判断从a到b是否是无穷大距离时,需要进行if(t > INF/2)判断,而并非是if(t == INF)判断,原因是INF是一个确定的值,并非真正的无穷大,会随着其他数值而受到影响,t大于某个与INF相同数量级的数即可。那么f[i, j, k] = min(f[i, j, k - 1), f[i, k, k - 1] + f[k, j, k - 1]。遍历所有点,d[i,j]=min(d[i,j],d[i,k]+d[k,j])读入邻接矩阵,将次通过动态规划装换成从i到j的最短距离矩阵。

2025-11-28 23:46:26 414

原创 spfa-java实现

SPFA 算法是 Bellman-Ford算法 的队列优化算法的别称,通常用于求含负权边的单源最短路径,以及判负权环。SPFA一般情况复杂度是O(m)最坏情况下复杂度和朴素 Bellman-Ford 相同,为O(nm)。队头不断出队,计算始点起点经过队头到其他点的距离是否变短,如果变短且被点不在队列中,则把该点加入到队尾。spfa是上面bellmanford优化而来的 样子有点像迪杰斯特拉。while queue 不空。

2025-11-17 18:27:52 242

原创 bellman-ford-java实现

请你求出从 1 号点到 n 号点的最多经过 k 条边的最短距离,如果无法从 1 号点走到 n 号点,输出。给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环,用于负权并且有边数限制的情况。for 所有边 a,b,w。

2025-11-17 18:27:19 223

原创 Dijkstra-java实现

堆优化版的dijkstra是对朴素版dijkstra进行了优化,在朴素版dijkstra中时间复杂度最高的寻找距离。朴素迪杰斯特拉算法,s:当前已确定最短距离的点。最短的点O(n^2)可以使用最小堆优化。手写堆或者使用优先队列。

2025-11-15 23:28:00 317

原创 拓扑排序-java实现

有向无环图一定存在一个拓扑序列,用队列来做,每次存储每个点的入度,拓扑排序的起点是入度为0的点,用队列来解决这个问题,每次发现某点的入度为 0,所以删除该点和该点上所连的边,继续检查入度为0的点,循环(不清楚的可以自己画个图比如 a->b a->c b->d c->d这样的图)。队列顺序就是拓扑排序。奇怪的知识增加了 用System.out.printf(q[i] + " ");会超时,写算法的时候尽量用print和println。

2025-11-15 18:22:25 219

原创 移动边缘计算网络中面向成本效益的联邦学习的联合类平衡客户端选择与带宽分配 论文阅读

联邦学习(FL)在保护数据隐私和减轻移动边缘计算(MEC)网络中的网络负担方面具有巨大潜力。然而,由于移动客户端(MC)的系统和数据异质性,在带宽有限的 MEC 网络中实现成本高效的 FL,客户端选择和带宽分配是关键。为应对这些挑战,我们研究了联合客户端选择和带宽分配问题,以降低 FL 训练的成本(即延迟和能耗)。我们提出了该问题,并将其分解为一个整体子问题以减少轮次数量,以及一个部分子问题以减少每轮 FL 的成本。我们提出了一个联合类别平衡客户端选择和带宽分配(CBCSBA)框架来解决整个问题。具体而言,

2025-11-15 12:00:00 683

原创 树与图的深度和广度优先遍历-java实现邻接表存储

和邻接表(存储每个点直接到达的所有点,h[N]存储每个位置头结点,每次加入边都在头结点加入)两种表达方式。找出每个点去掉后,它的剩余联通块的点数的最大值,然后遍历得到其中最大值的最小值是多少。每次当前节点保存该节点的子树的点的数量,对于每个节点,父节点那一坨。图分成有向图和无向图(a-b 建a->b和b->a)最短路径都参考bfs写法,队列引入更新距离矩阵d。有向图可以用邻接矩阵(树是特殊的无环连通图。

2025-11-14 21:43:25 443

原创 BFS-走迷宫和八数码-java实现

思路对于所有边权都是1的时候,广搜能搜到最短路径,深搜一定能找到终点用队列解决,while queue不空,把队头取出,然后扩展能走的方向(没超过边界,没遇到墙并且没走过)。存储两个方位偏移量dx,dy,对应上(-1,0)下(1,0)左(0,-1)右(0,1)移动,然后挨个遍历存储能走到离起点的距离,输出到终点的最短距离d[n-1][m-1]代码。

2025-11-13 22:20:46 188

原创 DFS-排列数字和n皇后-java实现

很简单直接背模板,从下标0开始dfs,如果下标u=排列数量直接输出path,否则,从1-n看每个数字是否用过st数组,没用过,就让当前下标位置为for的数字path[u]=i,标记用过st[i]=true,dfs下一个位置dfs(u+1),回溯的时候令st[i]=false。两种方法,第一种按全排列的思路走一遍,不过判断的地方改成没有同一列,对角线,反对角线冲突这样,思路更简单,推荐记。更原始的写法,每个位置判断放不放皇后。

2025-11-12 22:13:24 328

原创 算法-哈希表和相关练习-java

1.x mod 10^5(最好质数并且离2的n整次幂尽量远) 2.对于冲突,当前位置有数了就对位置+1直到当前没数为止,一般需要开当前范围的两到三倍,然后定义一个0x3f3f3f是大于10^9的一个数(在最大范围外)拉链法:假设映射到1~10^5内,相当于每个数字的位置都是一个链表,有冲突就插入到当前链表最后面这样。运用:把一个很大的空间映射到比较小的范围(1。哈希表存储方式:1.开放寻址法,2.拉链法。开放寻址法:直接一个数组模拟蹲坑。

2025-11-10 23:37:48 313

原创 堆相关算法题基础-java实现

问题是交换节点 a 和 b,同时也需要交换节点 a 和 b 对应的 ph 值,即要找到 ph[i] = a 和 ph[j] = b,进行交换 swap(ph[i], ph[j]),这样就需要遍历 ph[],时间复杂度高。] = a 的情况。创建的时候从n/2开始:n/2开始,还有一个角度可以理解,因为n是最大值,n/2是n的父节点,因为n是最大,所以n/2是最大的有子节点的父节点,所以从n/2往前遍历,就可以把整个数组遍历一遍。hp[a] = k: 堆中下标是 a 的节点是第 k 个插入的数。

2025-11-09 22:50:32 400

原创 SlaugFL论文阅读学习

SlaugFL是一种基于选择性GAN数据增强的边缘联邦学习方案,旨在解决非独立同分布(non-IID)数据导致的模型性能下降和通信开销问题。该方案通过筛选代表性设备共享局部类别原型,结合Stable Diffusion和ChatGPT生成域匹配的GAN训练数据,训练ACGAN生成IID数据。设备端采用"增强数据校准"和"隐私友好全局类别原型校准"的双校准策略优化局部模型。实验表明,SlaugFL在CIFAR-10/CIFAR-100和MIO-TCD数据集上,相比主流方

2025-11-09 11:24:49 975

原创 并查集java代码实现

每个集合都写成树的形式存储,每个节点存储它的父节点p[x],根节点p[x]==x,当x一直往上找到根节点时就找到了它的所在集合,如果要合并就直接把两个集合的父节点连起来(让一个集合做另一个集合的“儿子”)查找优化可以做一个路径压缩:先每个节点第一次需要依次往上查找,找完第一遍让所有当前路径上的所有节点直接改成都直接指向父节点。维护每个节点到根节点的距离作为判断关系的一句:D->B->A->C ,C是根节点,A->C=1表示A吃C,B->C=2表示B被C吃,D->C=3表示同类,只有这三种距离超过后就%3。

2025-11-08 12:50:06 636

原创 Trie树相关算法题java实现

本文介绍了Trie树(字典树)数据结构及其两种应用。Trie树是一种高效存储和查找字符串集合的数据结构,通过共享前缀来优化存储空间。文章详细讲解了Trie的实现方式,包括节点存储结构、插入和查询操作。随后展示了Trie在字符串统计和最大异或对问题中的实际应用,通过二进制位处理实现了高效的异或运算。文中提供了两种应用的Java实现代码,并配以示意图解释核心思路,帮助读者理解Trie树的工作原理和编程实现。

2025-11-08 12:47:03 781

原创 单调栈和单调队列

本文介绍了两种经典算法:单调栈和单调队列。单调栈用于求解数组中每个元素左边第一个比它小的数,通过维护一个单调递增栈实现。单调队列用于滑动窗口最值问题,通过分别维护单调递增和递减队列来获取窗口最小值和最大值。两种算法的核心思想都是通过特定方式维护数据结构的单调性来优化暴力解法,将时间复杂度从O(n²)降低到O(n)。文章提供了Java代码实现,并包含详细注释解释算法步骤和原理。

2025-11-06 10:32:29 803

原创 java实现模拟栈和队列和表达式求值

本文介绍了栈和队列的基本概念及实现方法。栈采用"先进后出"原则,使用数组模拟栈结构,详细说明了插入、弹出、判空等操作的实现方式,并提供了Java代码示例。队列采用"先进先出"原则,同样使用数组实现,说明了插入、删除、判空等操作。文中还讲解了中缀表达式求值算法,通过双栈结构(运算符栈和数字栈)实现了带优先级的运算处理。代码示例中包含了栈和队列的常见操作实现,以及如何处理不同优先级的运算符和括号。这些数据结构在算法和程序设计中具有广泛应用。

2025-11-05 10:30:55 378

原创 vue安装及其配置[2025]

选择vue3进行创建项目,创建好后有下面的仪表盘,点击任务,serve,点击运行,等待,点击启动,和上面的结果一样。在“插件中”能安装需要的依赖。放开权限:点击下载的node文件的属性,点击“安全”-“编辑”,把。修改环境变量:系统变量加上%NODE_HOME%:node的位置。选择vue3,回车,选择npm回车,然后进入到创建的文件夹,在里面点击创建项目,在你想要的目录下创建vue项目。打开命令行,设置缓存文件夹和全局文件夹。安装webpack-cli。安装好的包都在下面目录里。#查询当前使用的镜像源。

2025-11-04 10:42:11 656

原创 数组模拟单链表和双链表

用e[N] 数组来表示当前节点值,ne[i]表示第i个节点的next的下标。用数组模拟单链表的插入,删除,头插入操作。

2025-11-04 09:17:56 207

原创 损失函数系列:focal-Dice-vgg

Focal Loss在论文《》中被提出,主要用于解决样本数据中的问题。它是在标准基础上的改进,通过动态调整易分类样本的权重,使模型在训练过程中更加关注难分类样本。传统的做法:重采样:采样少数类别样本,欠采样多数类别样本调整类别权重:在损失函数中,给少数类别比较大的权重,给多样本较小的权重,让模型更加关注少数类别的样本。比如BCECEpi​−αt​logpt​。

2025-11-03 20:01:00 751

原创 acwing-springboot课程-java基础

public: 所有对象均可以访问private: 只有自己可以访问this.x = x;this.y = y;this.x = x;this.y = y;return x;return y;}```##### 3.7.2.2 接口的继承每个接口可以继承多个接口```java}```##### 3.7.2.3 接口的实现每个类可以实现多个接口```java");");");return 10;}```##### 3.7.2.4 接口的多态。

2025-11-03 12:32:17 888

原创 acwing-双指针算法

放上面红色指针往前移的时候,绿色指针一定不会往后移(不然就矛盾了,因为绿色指针移动逻辑是有重复的元素),因此当红色指针向右移动,绿色指针也一定是向右移动的,具有单调性,所以可以优化每次循环i看j要不要往右走。保持s[j,i]区间内每个数字都<=1,如果新加入的a[i+1]是重复的那么s[a[i+1]]>1,需要移动j。双指针有两个大类,一类是有两个数组,每个数组有一个指针,一类是一个数组,两个指针分别指向头和尾。当a[i]重复时,先把a[j]次数减1,再右移j。和<x就退出j的遍历。

2025-11-03 11:57:28 1072

原创 acwing二分算法题

整个区间可以一分为二,左半边满足某个性质,右半边不满足,就可以做二分。如下图,红色部分表示满足性质,那么选择的点应该在mid右边,由于mid是可以被满足的所以此时将区间变成[mid, r] l=mid,同理,mid在右边,说明mid不满足该条件,那应该是右边界mid-1开始找,更新为[l, mid-1] r=mid-1。总之每次如果是l=mid就要在mid计算时+1。每次先写mid,然后写check函数,思考怎么选择边界,根据选择的边界判断mid计算部分要不要+1。比较简单直接在范围内挨次尝试就行。

2025-11-01 09:18:44 418

原创 归并排序算法题

本质就是 C由A,B构成,那么对C求某些特定的性质,可以等价于 对A求(红色)加上对B求(绿色),再加上将A,B整合之后产生的性质(黄色),然后又可以将A看作由更小的 E,F。假设给你两个有序列的数组A,B,求那么显然,A和B的逆序数就都是0对不对,所以将A,B按照顺序接成一个新的数组的逆序数,是不是就等于求y总视频中所讲的黄色逆序数的个数?所以我觉得归并的本质还是求黄色的逆序数,因为A红色的逆序数可以等于A的红色+黄色+绿色,而最底层的红色和绿色都为0,所以本质是求黄色。首先归并排序的思路是。

2025-10-31 08:14:21 292

原创 快速排序算法题

直接背模板 从中间(任意一个位置作为比较点)开始 左边放比q[mid]小的元素 右边放比q[mid]大的元素(如果不满足且左指针<右指针就交换位置) 左右递归。哇今天这个折腾了半小时,要不是python语法错误就是下标越界,而且把递归还写错位置了,写习惯c++作为算法,python还真是不习惯。这里时间复杂度是要求O(n) 快排是O(nlogn)所以需要优化一下代码:本题需要找的是第k个小的数,假设比较点是中间的位置左边。,也就是第k小的数在左边那么只需要递归左边,同理对于右边只需要递归右边第。

2025-10-30 10:46:19 822

原创 Importance-Aware Client Scheduling and Resource Allocation for FL in UAV Networks 翻译

2025-8-22阅读摘要——在中采用联邦学习(FL)是一种极具前景的范式,能够赋予无人机网络更强的智能支持复杂应用。考虑到数据属性不均衡、无人机能量有限及无线连接不稳定等因素,设计有效的客户端调度方案对实现高效联邦学习至关重要。本文为合理考量优先级标准,首先从数据属性和本地更新两个维度提出两种重要性度量指标——数据重要性度量(DIM)和梯度重要性度量(GIM)。基于DIM和GIM的考量,我们构建了一个优化问题来联合优化无人机的客户端调度、计算与通信。

2025-08-23 00:26:35 748

原创 AFL-DCS: An asynchronous federated learning framework with dynamic client scheduling

联邦学习作为一种新兴的分布式机器学习范式,能够在保护本地数据隐私的同时,在大量边缘设备上训练全局模型。在典型的联邦学习范式下,全局模型通过同步协议进行更新,这要求服务器在每个回合更新全局模型之前等待所有客户端返回其模型参数。然而,由于设备异构性导致的拖沓效应可能会严重降低同步联邦学习的训练效率。异步联邦学习可以有效缓解由设备异构性引起的训练低效,但异步更新协议使得全局模型更容易受到异构数据的影响。在非独立同分布(non-IID)设置下,异步联邦学习的全局模型可能难以收敛,甚至无法收敛。

2025-03-26 17:47:39 1059 1

原创 Federated learning client selection algorithm based on gradient similarity阅读

联邦学习(FL)是一种创新的机器学习方法,终端设备在中央服务器协调下共同训练全局模型,解决了数据隐私和数据孤岛问题,而无需将数据传输到中央服务器。然而,在联邦学习中,客户端数据的异质性显著影响了 FL 的性能。为了解决模型精度低和收敛速度慢的问题,提出了一种基于梯度相似性的客户端选择算法(FedGSCS)。该算法通过比较客户端梯度与平均梯度之间的相似性来选择客户端,优先选择能够加速模型聚合以促进模型收敛的客户端。

2025-03-24 20:54:07 1246

原创 Position Embedding Transformation for Multi-View 3D Object Detection PETR模型训练过程

环境:Linux, Python=3.6.8, CUDA = 11.1, pytorch = 1.9.0, mmdet3d = 0.17.1。下载nuScenes数据集:需注册并下载nuScenes数据集,放置到data/nuscenes目录,我用的是mini进行测试。修改config文件的data路径,例如:·data_root = ‘xxxx/PETR/data/nuscenes/’·可以下载官方训练好的权重选择正确的config文件进行推理:epoch_24.pth。的时候有什么库没安装上就用。

2025-03-06 22:41:17 361

原创 Adaptive Federated Learning in Heterogeneous Wireless Networks with Independent Sampling论文阅读和学习

联邦学习 (FL) 算法通常对客户端的随机子集进行采样,以解决落后者问题并提高通信效率。虽然最近的研究提出了各种客户端采样方法,但它们在联合系统和数据异构设计方面存在局限性,可能与实际的异构无线网络不一致。在这项工作中,我们提倡一种新的独立客户端采样策略,以最大限度地减少 FL 的挂钟训练时间,同时考虑通信和计算中的数据异构性和系统异构性。我们首先推导出具有独立客户端采样的非凸损失函数的新收敛界限,然后提出一种自适应带宽分配方案。

2024-12-30 19:39:01 1301 1

原创 Client Selection in Federated Learning: Principles,Challenges, and Opportunities论文阅读学习

联邦学习(FL)作为一种训练机器学习(ML)模型的隐私保护范式,已经受到了工业界和学术界的广泛关注。在一个典型的FL场景中,客户端在数据分布和硬件配置方面表现出显著的异构性。因此,在每一轮训练中对随机客户端进行抽样,可能无法充分利用异构客户端的局部更新,导致模型精度较低、收敛速度较慢、公平性降低等。为了解决FL客户端异构性问题,人们开发了各种客户端选择算法,显示出了良好的性能改进。在这篇文章中,我们系统地介绍了FL客户选择的新兴领域的最新进展及其挑战和研究机会。

2024-12-30 19:36:29 1264 1

原创 vue项目搭建规范

Prettier 是一款强大的代码格式化工具,支持 JavaScript、TypeScript、CSS、SCSS、Less、JSX、Angular、Vue、GraphQL、JSON、Markdown 等语言,基本上前端能用到的文件格式它都可以搞定,是当下最流行的代码格式化工具。通常我们的git commit会按照统一的风格来提交,这样可以快速定位每次提交的内容,方便之后对版本进行控制。1.在前面创建项目的时候,我们就选择了ESLint,所以Vue会默认帮助我们配置需要的ESLint环境。

2024-12-28 14:16:31 984

原创 书籍阅读---为什么精英都是时间控--摘抄

列一下自己的时间计划表根据本书的一些方案可以列出自己的时间规划。

2024-12-02 14:04:21 1293

原创 FedGraph: Federated Graph Learning With Intelligent Sampling论文阅读

联邦学习因其在分布式机器学习中的隐私保护而引起了研究的广泛关注。然而,现有的联邦学习工作主要集中在卷积神经网络(CNN)上,它不能有效地处理在许多应用中流行的图数据。图卷积网络(GCN)被认为是最有前途的图学习技术之一,但其联邦设置很少被探索。在本文中,我们提出了用于多个计算客户端之间的联邦图学习的联邦图,每个计算客户端都包含一个子图。FedGraph通过解决两个独特的挑战,为跨客户端提供了强大的图形学习能力。首先,传统的GCN训练需要在客户之间进行特征数据共享,从而导致隐私泄露的风险。

2024-11-26 20:56:23 1589 1

原创 Collaborative DNNs Inference with Joint Model Partition and Compression in MEC论文阅读和学习

移动边缘云计算利用边缘设备和云服务器的计算资源来执行复杂的深度神经网络 (DNNs) 进行协作推理。然而,许多现有的协作推理方法没有充分考虑边缘设备的有限资源,导致推理延迟较高。在本文中,我们设计了一个集成计算框架,该框架结合了模型分区和压缩以减少推理延迟。具体来说,我们在中间层对 DNN 模型进行分区,并将前一层部署在边缘设备上,将后一层部署在云服务器上。我们提出了一种协作双智能体强化学习算法 CPCDRL 来确定分区点和压缩比。它能够根据各种分区点自适应地调整压缩比,其总体目标是最。

2024-11-07 16:54:52 1136 2

原创 后资本主义生活财富的意义、经济的未来与货币的时间理论--阅读记录

吉尔德用四个比喻构建了一个从工业时代跨越到智能时代的极具前瞻性的思考框架:经济学的信息理论可归结为四个经典命题:

2024-11-03 10:12:29 191

原创 Energy-Efficient Client Sampling for Federated Learning in Heterogeneous MEC Networks 论文阅读和学习

为了解决网络拥塞和数据隐私问题,将多个客户端和一个参数服务器相结合的联邦学习(FL)已广泛应用于移动边缘计算(MEC)网络,以处理移动客户端生成的大量数据。然而,现有的客户端采样方法没有充分考虑数据异构性和系统异构性。参数服务器选择不合适的客户端参与FL训练过程。这不可避免地导致全局模型的收敛速度变慢,能耗增加。在本文中,我们设计了一个客户端采样模型,目的是选择合适的客户端来提高异构MEC网络中FL的能源效率。然后,我们通过量化客户端的通信能力、计算能力和数据质量,提出了一种节能的客户端采样策略。

2024-11-03 10:11:58 1288 1

原创 Incentive-Driven Wireless Powered Federated Learning阅读和学习

联邦学习 (FL) 通过共享模型参数而不是原始数据来训练机器模型,可以保护终端设备工人 (EW) 的数据隐私。然而由于能量限制和自私心理,EW 可能不愿意参与或者训练缓慢,从而影响全局 FL 模型的性能。为了解决这些问题,我们提出了一个基于三阶段 Stackelberg 博弈的无线供电 FL 框架,以激励所有参与者参与系统,同时确保 FL 任务的成功完成。具体来说,基站(BS)发布FL任务,希望以较低的成本获得更好的FL模型。EW训练本地FL模型,希望以更少的能耗获得更多的报酬。

2024-10-23 09:39:23 853

原创 Communication-Efficient Learning of Deep Networks from Decentralized Data论文代码复现

这两天看了一下《Communication-Efficient Learning of Deep Networks from Decentralized Data》论文,感兴趣的同学可以去看看我上一个博客,然后根据论文还有问gpt写了一下相关代码,如果有问题欢迎指正。

2024-10-11 17:37:17 441 1

原创 Communication-Efficient Learning of Deep Networks from Decentralized Data论文阅读和学习

现代移动设备可以访问大量适合学习模型的数据,这反过来可以大大改善设备上的用户体验。例如,语言模型可以改善语音识别和文本输入,图像模型可以自动选择好的照片。然而,这些丰富的数据往往对隐私敏感,数量庞大,或两者兼而有之,这可能会妨碍使用传统方法登录数据中心并在那里进行训练。我们提倡一种替代方案,将训练数据分布在移动设备上,并通过聚合本地计算的更新来学习共享模型。我们将这种分散的方法称为联邦学习。

2024-10-11 16:22:06 1126 1

Retrieval-Augmented Generation讲解

在问答和对话的场景下,通常可以通过检索和生成两种方式得到一个回复。检索式回复是在外部知识 库中检索出满意的回复,较为可靠和可控,但回复缺乏多样性;而生成式回复则依赖于强大的语言模 型中储存的内部知识,不可控,解释性差,但能生成更丰富的回复。把检索和生成结合起来, Facebook AI research 联合 UCL 和纽约大学于 2020 年提出:外部知识检索加持下的生成模型, Retrieval-Augmented Generation (RAG) 检索增强生成。

2023-11-11

java实验报告(Java课的练习)

java平时上机的实验报告文件,留作纪念

2022-05-26

数据库课设--软件工程教材共享系统

数据库课设--软件工程教材共享系统

2022-07-05

java实验报告(免费下载)

java平时上机的实验报告文件,留作纪念

2022-05-26

数据库系统实验报告(educoder版)

学校的数据库系统实验报告,因为想在电脑上删掉文件,就在这里留个纪念了,是头歌·上的作业。

2022-05-26

根据javaweb重点画的题目,有的有相应答案

javaweb考前测试一下水平

2022-05-10

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除