c++刷算法【数组】

温习数据结构与算法,准备一些比赛,为了学业和就业,以及提升自己的编程能力,将系统的刷刷算法,入手c++跟着carl,leetcode刷题笔记将持续更新…

数组

704. 二分查找

力扣题目链接

有序数组中无重复元素

class Solution {
public:
    int search(vector<int>& nums, int target) {
        int l=0;
        int r=nums.size()-1;
        while(l<=r){
            int m=(l+r)/2;  //换成 m=l+(r-l)/2防止溢出
            if(nums[m]>target){
              r=m-1;
            }else if(nums[m]<target){
              l=m+1;
            }else{
              return m;
            }
        }
        return -1;
    }
};

27. 移除元素

力扣题目链接

【法一】vector

erase(参数为迭代器),一次遍历

注意:删除元素,后面元素相当于前移,下标记得-1

class Solution {
public:
    int removeElement(vector<int>& nums, int val) {
        for(int i=0;i<nums.size();i++){
            if(nums[i]==val){
                nums.erase(nums.begin()+i);
                i--;
            }    
        }
        return nums.size();
    }
};
class Solution {
public:
    int removeElement(vector<int>& nums, int val) {
        for (auto it = nums.begin(); it != nums.end(); it++){
            if(*it==val){
                nums.erase(it);
                it--;  
            }
        }
        return nums.size();
    }
};

【法二】数组

数组的元素是不能删的,只能覆盖。要求新数组大小,所以要把目标值移动到最后,两层for循环优化就是双指针啦

class Solution {
public:
    int removeElement(vector<int>& nums, int val) {
        int slowIndex = 0;
        for (int fastIndex = 0; fastIndex < nums.size(); fastIndex++) {
            if (val != nums[fastIndex]) {
                nums[slowIndex++] = nums[fastIndex];
            }
        }
        return slowIndex;
    }
};

977.有序数组的平方

力扣题目链接

sort函数

(1)第一个参数first:是要排序的数组的起始地址。

(2)第二个参数last:是结束的地址(最后一个数据的后一个数据的地址)

(3)第三个参数comp是排序的方法:可以是从升序也可是降序。如果第三个参数不写,则默认的排序方法是从小到大排序。

对数组A的0~n-1元素进行升序排序,sort(A,A+n);

对于vector,sort(v.begin(),v.end())。

【法一】暴力排序

class Solution {
public:
    vector<int> sortedSquares(vector<int>& nums) {
        for(int i=0;i<nums.size();i++){
            nums[i]*=nums[i];
        }
        sort(nums.begin(),nums.end());
        return nums;
    }
};

【法二】双指针

数组其实是有序的, 只不过负数平方之后可能成为最大数了。

那么数组平方的最大值就在数组的两端,不是最左边就是最右边,不可能是中间。

此时可以考虑双指针法了,i指向起始位置,j指向终止位置。

定义一个新数组result,和A数组一样的大小,让k指向result数组终止位置。

如果A[i] * A[i] < A[j] * A[j] 那么result[k--] = A[j] * A[j];

如果A[i] * A[i] >= A[j] * A[j] 那么result[k--] = A[i] * A[i];

class Solution {
public:
    vector<int> sortedSquares(vector<int>& A) {
        int k = A.size() - 1;
        vector<int> result(A.size(), 0);
        for (int i = 0, j = A.size() - 1; i <= j;) { // 注意这里要i <= j,因为最后要处理两个元素
            if (A[i] * A[i] < A[j] * A[j])  {
                result[k--] = A[j] * A[j];
                j--;
            }
            else {
                result[k--] = A[i] * A[i];
                i++;
            }
        }
        return result;
    }
};

209.长度最小的子数组

力扣题目链接 读题!读题!读题!

【法一】暴力,保存满足条件的最大子集长

class Solution {
public:
    int minSubArrayLen(int s, vector<int>& nums) {
        int n = nums.size();
        if (n == 0) {
            return 0;
        }
        int ans = INT_MAX;
        for (int i = 0; i < n; i++) {
            int sum = 0;
            for (int j = i; j < n; j++) {
                sum += nums[j];
                if (sum >= s) {
                    ans = min(ans, j - i + 1);
                    break;
                }
            }
        }
        return ans == INT_MAX ? 0 : ans;
    }
};

【法二】双指针

可以看成滑动窗口,不断的调节子序列的起始位置和终止位置,从而得出我们要想的结果。

窗口就是 满足其和 ≥ s 的长度最小的连续 子数组。

窗口的起始位置如何移动:如果当前窗口的值大于s了,窗口就要向前移动了(也就是该缩小了)。

窗口的结束位置如何移动:窗口的结束位置就是遍历数组的指针,窗口的起始位置设置为数组的起始位置就可以了。

class Solution {
public:
    int minSubArrayLen(int s, vector<int>& nums) {
        int result = INT32_MAX;
        int sum = 0; // 滑动窗口数值之和
        int i = 0; // 滑动窗口起始位置
        int subLength = 0; // 滑动窗口的长度
        for (int j = 0; j < nums.size(); j++) {
            sum += nums[j];
            // 注意这里使用while,每次更新 i(起始位置),并不断比较子序列是否符合条件
            while (sum >= s) {
                subLength = (j - i + 1); // 取子序列的长度
                result = result < subLength ? result : subLength;
                sum -= nums[i++]; // 这里体现出滑动窗口的精髓之处,不断变更i(子序列的起始位置)
            }
        }
        // 如果result没有被赋值的话,就返回0,说明没有符合条件的子序列
        return result == INT32_MAX ? 0 : result;
    }
};

【法三】前缀和 + 二分查找

因为这道题保证了数组中每个元素都为正,所以前缀和一定是递增的,这一点保证了二分的正确性。如果题目没有说明数组中每个元素都为正,这里就不能使用二分来查找这个位置了。

class Solution {
public:
    int minSubArrayLen(int s, vector<int>& nums) {
        int n = nums.size();
        if (n == 0) {
            return 0;
        }
        int ans = INT_MAX;
        vector<int> sums(n + 1, 0); //定义前缀和数组,大小n+1,全0
        // sums[1] = A[0] 前 1 个元素的前缀和为 A[0]
        for (int i = 1; i <= n; i++) {
            sums[i] = sums[i - 1] + nums[i - 1];
        }
        for (int i = 1; i <= n; i++) {
            int target = s + sums[i - 1];
            auto bound = lower_bound(sums.begin(), sums.end(), target);//lower_bound()在 [first, last) 区域内查找不小于 target 的元素
            if (bound != sums.end()) {
                ans = min(ans, static_cast<int>((bound - sums.begin()) - (i - 1)));
            }
        }
        return ans == INT_MAX ? 0 : ans;
    }
};

//在 [first, last) 区域内查找不小于 val 的元素
ForwardIterator lower_bound (ForwardIterator first, ForwardIterator last,
                             const T& val);
//查找[first, last)区域中第一个大于 val 的元素。
ForwardIterator upper_bound (ForwardIterator first, ForwardIterator last,
                             const T& val);

//在 [first, last) 区域内查找第一个不符合 comp 规则的元素
ForwardIterator lower_bound (ForwardIterator first, ForwardIterator last,
                             const T& val, Compare comp);

//找到 [first, last) 范围内所有等于 val 的元素
pair<ForwardIterator,ForwardIterator> equal_range (ForwardIterator first, ForwardIterator last, const T& val, Compare comp);

//查找 [first, last) 区域内是否包含 val
bool binary_search (ForwardIterator first, ForwardIterator last,
                      const T& val);
//根据 comp 指定的规则,查找 [first, last) 区域内是否包含 val
bool binary_search (ForwardIterator first, ForwardIterator last,
                      const T& val, Compare comp);

59.螺旋矩阵II

力扣题目链接

没算法,读懂题画一画,模拟过程

class Solution {
public:
    vector<vector<int>> generateMatrix(int n) {
        int num = 1;
        int left = 0, top = 0, right = n - 1, bottom = n - 1;

        //初始化二维数组
        vector<vector<int>> res(n,vector<int>(n));
        while (num <= n*n ) {

            //left to right
            for (int i = left; i <= right; ++i) res[top][i] = num++;
            ++top;

            //top to bottom
            for (int i = top; i <= bottom; ++i) res[i][right] = num++;
            --right;

            //right to left
            for (int i = right; i >= left; --i) res[bottom][i] = num++;
            --bottom;

            //bottom to top
            for (int i = bottom; i >= top; --i) res[i][left] = num++;
            ++left;
        }
        return res;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值