c++刷算法【栈和队列】

温习数据结构与算法,准备一些比赛,为了学业和就业,以及提升自己的编程能力,将系统的刷刷算法,入手c++跟着carl,leetcode刷题笔记将持续更新…

队列

queue<int> q; //定义一个空队列q

push(x) -- 将一个元素放入队列的尾部。
pop() -- 从队列首部移除元素。
peek() -- 返回队列首部的元素。//同front()
empty() -- 返回队列是否为空。
back()访问队尾元素
size()访问队中的元素个数

stack<int> s;

push(x) -- 元素 x 入栈
pop() -- 移除栈顶元素
top() -- 获取栈顶元素
empty() -- 返回栈是否为空

232.用栈实现队列

力扣题目链接

模拟题,一个输入栈,一个输出栈

在push数据的时候,只要数据放进输入栈就好,但在pop的时候,操作就复杂一些,输出栈如果为空,就把进栈数据全部导入进来(注意是全部导入),再从出栈弹出数据,如果输出栈不为空,则直接从出栈弹出数据就可以了。

最后如何判断队列为空呢?如果进栈和出栈都为空的话,说明模拟的队列为空了。

class MyQueue {
public:
    stack<int> stIn;
    stack<int> stOut;
    /** Initialize your data structure here. */
    MyQueue() {

    }
    /** Push element x to the back of queue. */
    void push(int x) {
        stIn.push(x);
    }

    /** Removes the element from in front of queue and returns that element. */
    int pop() {
        // 只有当stOut为空的时候,再从stIn里导入数据(导入stIn全部数据)
        if (stOut.empty()) {
            // 从stIn导入数据直到stIn为空
            while(!stIn.empty()) {
                stOut.push(stIn.top());
                stIn.pop();
            }
        }
        int result = stOut.top();
        stOut.pop();
        return result;
    }

    /** Get the front element. */
    int peek() {
        int res = this->pop(); // 直接使用已有的pop函数
        stOut.push(res); // 因为pop函数弹出了元素res,所以再添加回去
        return res;
    }

    /** Returns whether the queue is empty. */
    bool empty() {
        return stIn.empty() && stOut.empty();
    }
};

225. 用队列实现栈

力扣题目链接

一个队列在模拟栈弹出元素的时候只要将队列头部的元素(除了最后一个元素外) 重新添加到队列尾部,此时在去弹出元素就是栈的顺序了。

class MyStack {
public:
    queue<int> que;
    /** Initialize your data structure here. */
    MyStack() {

    }
    /** Push element x onto stack. */
    void push(int x) {
        que.push(x);
    }
    /** Removes the element on top of the stack and returns that element. */
    int pop() {
        int size = que.size();
        size--;
        while (size--) { // 将队列头部的元素(除了最后一个元素外) 重新添加到队列尾部
            que.push(que.front());
            que.pop();
        }
        int result = que.front(); // 此时弹出的元素顺序就是栈的顺序了
        que.pop();
        return result;
    }

    /** Get the top element. */
    int top() {
        return que.back();
    }

    /** Returns whether the stack is empty. */
    bool empty() {
        return que.empty();
    }
};

20. 有效的括号

力扣题目链接

三种情况,if-else技巧,秒呀⬇️

class Solution {
public:
    bool isValid(string s) {
        stack<int> st;
        for (int i = 0; i < s.size(); i++) {
            if (s[i] == '(') st.push(')');
            else if (s[i] == '{') st.push('}');
            else if (s[i] == '[') st.push(']');
            // 第三种情况:遍历字符串匹配的过程中,栈已经为空了,没有匹配的字符了,说明右括号没有找到对应的左括号 return false
            // 第二种情况:遍历字符串匹配的过程中,发现栈里没有我们要匹配的字符。所以return false
            else if (st.empty() || st.top() != s[i]) return false;
            else st.pop(); // st.top() 与 s[i]相等,栈弹出元素
        }
        // 第一种情况:此时我们已经遍历完了字符串,但是栈不为空,说明有相应的左括号没有右括号来匹配,所以return false,否则就return true
        return st.empty();
    }
};

1047. 删除字符串中的所有相邻重复项

力扣题目链接

当字符串中同时有多组相邻重复项时,我们无论是先删除哪一个,都不会影响最终的结果。因此我们可以从左向右顺次处理该字符串。

而消除一对相邻重复项可能会导致新的相邻重复项出现。因此我们需要保存当前还未被删除的字符。一种显而易见的数据结构呼之欲出:栈。我们只需要遍历该字符串,如果当前字符和栈顶字符相同,我们就贪心地将其消去,否则就将其入栈即可。

class Solution {
public:
    string removeDuplicates(string S) {
        stack<char> st;
        for (char s : S) {
            if (st.empty() || s != st.top()) {
                st.push(s);
            } else {
                st.pop(); // s 与 st.top()相等的情况
            }
        }
        string result = "";
        while (!st.empty()) { // 将栈中元素放到result字符串汇总
            result += st.top();
            st.pop();
        }
        reverse (result.begin(), result.end()); // 此时字符串需要反转一下
        return result;

    }
};

在下面的C++ 代码中,由于std::string 类本身就提供了类似「入栈」和「出栈」的接口,因此我们直接将需要被返回的字符串作为栈即可。

class Solution {
public:
    string removeDuplicates(string S) {
        string result;
        for(char s : S) {
            if(result.empty() || result.back() != s) {
                result.push_back(s);
            }
            else {
                result.pop_back();
            }
        }
        return result;
    }
};

150. 逆波兰表达式求值

力扣题目链接

二叉树中后缀转中缀,相邻字符串运算

class Solution {
public:
    int evalRPN(vector<string>& tokens) {
        stack<int> st;
        for (int i = 0; i < tokens.size(); i++) {
            if (tokens[i] == "+" || tokens[i] == "-" || tokens[i] == "*" || tokens[i] == "/") {
                int num1 = st.top();
                st.pop();
                int num2 = st.top();
                st.pop();
                if (tokens[i] == "+") st.push(num2 + num1);
                if (tokens[i] == "-") st.push(num2 - num1);
                if (tokens[i] == "*") st.push(num2 * num1);
                if (tokens[i] == "/") st.push(num2 / num1);
            } else {
                st.push(stoi(tokens[i]));
            }
        }
        int result = st.top();
        st.pop(); // 把栈里最后一个元素弹出(其实不弹出也没事)
        return result;
    }
};
  • stoi(字符串,起始位置,n进制(默认10进制)),将 n 进制的字符串转化为十进制

    stoi(str, 0, 2); //将字符串 str 从 0 位置之后的数字的 2 进制数,转换为十进制

atoi()和stoi 把数字字符串转换成int输出

(1)当输入的字符串不是整形,且前半部分都是数字时,stoi()与atoi()都会取前面为整形的部分。如string testFloat = “12.34”;时,两者输出值为12。

(2)当输入的字符串不是整形,且前半部分不是数字时,stoi()会报错,但atoi()会输出0。

239. 滑动窗口最大值

力扣题目链接

第一想法暴力😅,看看优化思路:双端队列实现的单调队列

首先窗口向右滑动的过程就是将窗口最左侧的元素删除,同时在窗口的最右侧添加一个新的元素,这就要用到双端队列,然后找双端队列中的最大元素。

那剩下就是如何找到滑动窗口中的最大值。

那我们就可以只在队列中保留可能成为窗口最大元素的元素,去掉不可能成为窗口中最大元素的元素。

想象一下,如果要进来的是个值大的元素,那一定会比之前早进去的值小的元素晚离开队列,而且值大的元素在,都没值小的元素啥事,所以值小的元素直接弹出队列即可。

这样队列里其实维护的一个单调递减的单调队列。

class Solution {
private:
    class MyQueue { //单调队列(从大到小)
    public:
        deque<int> que; // 使用deque来实现单调队列
        // 每次弹出的时候,比较当前要弹出的数值是否等于队列出口元素的数值,如果相等则弹出。
        // 同时pop之前判断队列当前是否为空。
        void pop(int value) {
            if (!que.empty() && value == que.front()) {
                que.pop_front();
            }
        }
        // 如果push的数值大于入口元素的数值,那么就将队列后端的数值弹出,直到push的数值小于等于队列入口元素的数值为止。
        // 这样就保持了队列里的数值是单调从大到小的了。
        void push(int value) {
            while (!que.empty() && value > que.back()) {
                que.pop_back();
            }
            que.push_back(value);
        }
        // 查询当前队列里的最大值 直接返回队列前端也就是front就可以了。
        int front() {
            return que.front();
        }
    };
public:
    vector<int> maxSlidingWindow(vector<int>& nums, int k) {
        MyQueue que;
        vector<int> result;
        for (int i = 0; i < k; i++) { // 先将前k的元素放进队列
            que.push(nums[i]);
        }
        result.push_back(que.front()); // result 记录前k的元素的最大值
        for (int i = k; i < nums.size(); i++) {
            que.pop(nums[i - k]); // 滑动窗口移除最前面元素
            que.push(nums[i]); // 滑动窗口前加入最后面的元素
            result.push_back(que.front()); // 记录对应的最大值
        }
        return result;
    }
};

347.前 K 个高频元素

力扣题目链接

  1. 要统计元素出现频率 map
  2. 对频率排序 priority_queue 披着队列外衣的堆
  3. 找出前K个高频元素 小顶堆,统计最大前k个元素,只有小顶堆每次将最小的元素弹出,最后小顶堆里积累的才是前k个最大元素。

堆是一棵完全二叉树,树中每个结点的值都不小于(或不大于)其左右孩子的值。 如果父亲结点是大于等于左右孩子就是大顶堆,小于等于左右孩子就是小顶堆。

所以大家经常说的大顶堆(堆头是最大元素),小顶堆(堆头是最小元素),如果懒得自己实现的话,就直接用priority_queue(优先级队列)就可以了,底层实现都是一样的,从小到大排就是小顶堆,从大到小排就是大顶堆。

priority_queue<Type, Container, Functional>
Type为数据类型, Container为保存数据的容器,Functional为元素比较方式。
如果不写后两个参数,那么容器默认用的是vector,比较方式默认用operator<,也就是优先队列是大顶堆,队头元素最大。
// 时间复杂度:O(nlogk)
// 空间复杂度:O(n)
class Solution {
public:
    // 小顶堆
    class mycomparison {
    public:
        bool operator()(const pair<int, int>& lhs, const pair<int, int>& rhs) {
            return lhs.second > rhs.second;
        }
    };
    vector<int> topKFrequent(vector<int>& nums, int k) {
        // 要统计元素出现频率
        unordered_map<int, int> map; // map<nums[i],对应出现的次数>
        for (int i = 0; i < nums.size(); i++) {
            map[nums[i]]++;
        }

        // 对频率排序
        // 定义一个小顶堆,大小为k
        priority_queue<pair<int, int>, vector<pair<int, int>>, mycomparison> pri_que;

        // 用固定大小为k的小顶堆,扫面所有频率的数值
        for (unordered_map<int, int>::iterator it = map.begin(); it != map.end(); it++) {
            pri_que.push(*it);
            if (pri_que.size() > k) { // 如果堆的大小大于了K,则队列弹出,保证堆的大小一直为k
                pri_que.pop();
            }
        }

        // 找出前K个高频元素,因为小顶堆先弹出的是最小的,所以倒序来输出到数组
        vector<int> result(k);
        for (int i = k - 1; i >= 0; i--) {
            result[i] = pri_que.top().first;
            pri_que.pop();
        }
        return result;

    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值