自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(6)
  • 收藏
  • 关注

原创 神经网络总结

神经元模型 神经元模型是一个包含输入,输出与计算功能的模型。输入可以类比为神经元的树突,而输出可以类比为神经元的轴突,计算则可以类比为细胞核。 下图是一个典型的神经元模型:包含有3个输入,1个输出,以及2个计算功能。 注意中间的箭头线。这些线称为“连接”。每个上有一个“权值”。     在实际的神经网络中,我们不能直接用逻辑回归,必须要在逻辑回归外面再套上一个函数,这个函数我们就称它为激活函数,如上图中的非线性函数。激活函数非常非常重要,如果没有它,那么神经网络的智

2021-09-20 16:01:58 430

原创 考核题总结

1.当数据有缺失值的时候, 你认为处理缺失值比较合理的方法(缺失值举例:泰坦尼克号幸存者数据中 有年龄 性别 职业 是否存活 四个特征 但某些样本的职业特征为空)。 (1)均值,极值,众数,中位数填补 (2)回归决策树预测,把label作为特征也加入到特征里来 2.请简述随机梯度下降,批梯度下降的区别和各自的优点 (1)随机就是计算一个样本的loss之后就进行梯度下降 a)优点:迭代速度快,可以跳出局部最小(因为震荡大) b)缺点:收敛速度慢(因为震荡大) (2)批梯度下降就是一批样本计算los

2021-09-12 15:35:40 671

原创 决策数总结

决策数总结 1.基本流程 决策数学习的目的是为了产生一棵泛化能力强,即处理未见示例能力强的决策数,其基本流程为: 输入: 训练集 D={(X1,y1),(X2,y2),...,(Xm,ym)} 属性集 A={a1,a2,...,ad} 过程:函数 TreeGenerate(D,A) 生成结点 node; if D中样本全属于同一类别C then 将node标记为C类叶结点; return end if if A=∅ or D中样本在A上取值相同

2021-09-11 16:28:41 199

原创 项目实战-信用卡识别

算法设计: 1:识别模板图片各个数字的轮廓: #读取模板图像 img=cv2.imread('model.png') #灰度图 ref=cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 二值图像(阈值) ref=cv2.threshold(ref.copy(), 10, 255, cv2.THRESH_BINARY_INV)[1] #计算轮廓(仅外部) contours, hierarchy = cv2.findContours(ref.copy(), cv2.RETR_EXT

2021-06-05 17:35:53 317 2

原创 寒假考核总结

寒假考核总结 第一部分: 1.请写出下面程序的输出结果 #include<stdio.h> int main(void){ printf("%d\n",printf("Hello World!\n")); return 0; } 输出结果: Hello World! 13(字符串的字节长度) 3.CSV的中文全称为 逗号分隔值。CSV文件 是纯文本文件。 4.csv.reader()中参数 delimiter的作用是分割符,默认为英文逗号。 5.使用pd.read_csv(

2021-03-13 20:32:32 138

原创 寒假数据处理任务总结

寒假数据处理任务总结 任务描述 本次任务要处理的数据共101227行,样例如下: 18 Jogging 102271561469000 -13.53 16.89 -6.4 18 Jogging 102271641608000 -5.75 16.89 -0.46 18 Jogging 102271681617000 -2.18 16.32 11.07 18 Jogging 3.36 18 Downstairs 103260201636000 -4.44 7.06 1.95 18 Downstairs 1032

2021-03-05 23:02:45 126 2

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除