简单排序
前提:
void X_Sort(ElementType A[], int N)
1.冒泡排序
void Bublle_Sort(ElementType A[], int N) {
for (p = N - 1;p >= 0;p--) {
flag = 0;
for (int i = 0;i < p;i++) {
if (A[i] > A[i + 1]) {
Swap(A[i], A[i + 1]);
flag = 1;
}
}
if (flag == 0) break;
}
}
最好的情况:T=O(N)
最坏的情况:T=O(N^2)
稳定性
2.插入排序
void Insertion_Sort(ElementType A[], int N) {
for (P = 1;P < N;P++) {
Tmp = A[P];
for (i = p;i > 0 && A[i - 1] > Tmp;i--) {
A[i] = A[i - 1];
A[i] = Tmp;
}
}
}
最好的情况:顺序T=O(N)
最坏的情况:逆序T=O(N^2)
3.时间复杂度的下界
- 对于下标 i<j,如果A[i] > A[j],则称(i,j)是一对逆序对
- 交换2个相邻元素正好消去1个逆序对!
- 插入排序:T(N,I)=O(N+I)
- 定理:任意N个不同元素组成的序列平均具有N(N-1)/4个逆序对。
- 定理:任意仅以交换相邻两元素来排序的算法,其平均时间复杂度为Ω(N^2)。
- 这意味着:要提高算法效率,我们必须
每次消去不止 1 个逆序对!
每次消去相隔较远的2个逆序对
希尔排序
·
选择排序
void Selection_Sort(ElementType A[], int N) {
for (int i = 0;i < N;i++) {
MinPosition = ScanForMin(A, i, N - 1);
/* 从A[i]到A[N-1]中找最小元,并将其位置赋给MinPosition */
Swap(A[i], A[MinPosition]);
/* 并将未排序部分的最小元换到有序部分的最后位置 */
}
}
无论如何:T=θ(N^2)
2022年1月23日小结
排序先学到这啦 ,冒泡排序还是蛮熟悉的啦,选择和希尔排序课后再查阅一下资料,单独分出一块详细做一下笔记。堆还没有学,我是跳着看到排序的,学完堆立马就把剩下内容学完。加油!