生日悖论的笔记

生日悖论

生日悖论的传统表述

生日悖论的起源是一个简单的问题:两个人出生在同一天的概率是多少?这个也通常是概率课堂上老师会展现的一个问题。这个问题的答案可以很轻松的看出是1/365≈0.274(假设一年只有365天,且生日分布均匀。因为两个人的生日是独立事件,所以第一个人可以为一年中的任意一天,而第二个人则是一年中固定的与第一个人相同的一天。也可以从反面计算两个人生日不同的概率(365*364)/(365*365),然后用1减去,可以得到相同的结果)。

生日悖论的扩展

而当问题扩展到在三个人中,有两个人生日相等的概率是多少时,由于第三人的引入,使得他既可以与第一个人发生碰撞(两个事件有相同的结果),也可以跟第二个人发生碰撞,所以从正面来直接求发生碰撞的概率是困难的(不能简单地因为三个人有三种碰撞的可能,就用(1/365)*3来计算,尽管在人数较少是两个算法结果相似,但是当人数越多,差距就越大)。我们不妨先计算不发生碰撞的概率:

设集合Ω={1,2,3,……,N}为事件的样本空间,且它们发生的概率
P ( i ) = 1 N P(i)=\frac{1}{N} P(i)=N1
,实验X就是从样本空间Ω中随机选择一个元素(不移走),则k次实验中结果至少有两次相同的概率是多少?
在生日悖论中,N=365,k就是在k个人中存在两个人生日相同的情况。
先算没有碰撞发生的情况:第一个人明显不会有重复,因此所有N个选择都可以选,没有重复的概率是1;选取第二个人时,为了避免与第一个人重复,只有(N-1)个选择,概率为
N − 1 N \frac{N-1}{N} NN1
,以此类推,第三个人无碰撞的概率为
N − 2 N \frac{N-2}{N} NN2
,第k个人无碰撞的概率为
N − k N \frac{N-k}{N} NNk

易知k个人都无碰撞的概率是
N ( N − 1 ) ( N − 2 ) ( N − 3 ) … … ( N − k ) N k \frac{N(N-1)(N-2)(N-3)……(N-k)}{N^k} NkN(N1)(N2)(N3)(Nk)
可以约分为:
( 1 − i N ) ( 1 − 2 N ) . . . ( 1 − k − 1 N ) (1-\frac{i}{N})(1-\frac{2}{N})...(1-\frac{k-1}{N}) (1Ni)(1N2)...(1Nk1)
由泰勒展开式
e − 1 n ≈ 1 − 1 N e^\frac{-1}{n}≈1-\frac{1}{N} en11N1
当N足够大时,可以近似的将原式近似的写成
e − 1 N e − 2 N . . . e − ( k − 1 ) N = e − k ( k − 1 ) 2 N e^\frac{-1}{N}e^\frac{-2}{N}...e^\frac{-(k-1)}{N}=e^\frac{-k(k-1)}{2N} eN1eN2...eN(k1)=e2Nk(k1)
我们可以通过这个公式来求得一些临界值的k的大概取值,例如我们求无碰撞概率为0.5时的情况:
l n ( 1 2 ) = − k ( k − 1 ) 2 N ln(\frac{1}{2})=\frac{-k(k-1)}{2N} ln(21)=2Nk(k1)
因为假设n为一个很大的值,所以在这里同样假设k也为很大的值,则有
k 2 = N ( 2 l n 2 ) k^2=N(2ln2) k2=N(2ln2)
2ln2≈1.1774,所以:
k ≈ 1.774 N k≈1.774\sqrt{N} k1.774N

生日悖论的简单应用

寻找两个特定的密文,它们的密文有某种相同的n位比特模式,那么通常要获得 2 n 2^{n} 2n个明文和密文才能保证找到相同的比特模式,而通能过生日悖论,只需要查看2^{n/2}个就能找到相同的模式。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值