Sets,Functions,Sequence,Sums,and Matrices 集合,函数,序列,求和,和矩阵 第二章

本文探讨了子集、幂集、笛卡尔积等数学概念,并深入讲解了函数、矩阵运算及其在信息技术中的应用,包括矩阵的加法、乘法、转置和幂。同时提到了真值集和差集在逻辑与数据操作中的角色。重点介绍了矩阵的布尔积,解释了一一对应位置相乘的原则。
摘要由CSDN通过智能技术生成

1.3Subsets 子集

在这里插入图片描述
区别:在这里插入图片描述

1.5 power sets 幂集

在这里插入图片描述

幂集的定义

例题:
在这里插入图片描述
注意:空集和集合自身都是该集合的子集,如下例题非常能证明这一点
在这里插入图片描述

笛卡尔积:

在这里插入图片描述
AxB 和 BxA 不是一个东西
在这里插入图片描述

关系

笛卡尔积AxB的一个子集R称为集合A到集合B的一个关系 R的元素是序偶

在这里插入图片描述

1.8 Truth Sets真值集

在这里插入图片描述

2.1 差集

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.2证明题

在这里插入图片描述
例题:

在这里插入图片描述
在这里插入图片描述

3.1 函数的定义

在这里插入图片描述
在这里插入图片描述

3.2映上和满射

在这里插入图片描述
在这里插入图片描述
e不是函数,因为一个元素指派给了两个不同的元素

6.1 矩阵的运算

加法
在这里插入图片描述
乘法
在这里插入图片描述
例题:
在这里插入图片描述

矩阵的转置和幂

转置:
把行和列交换一下
幂:
n个相同矩阵相乘

布尔积

在这里插入图片描述
矩阵是4x3的话,4是列数,3是行数
例题:
在这里插入图片描述

第一行 * 第一列 = a11
第一行 * 第二列=a12
都是一一对应的位置相乘

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值