关于p级数的证明

证明过程
中世纪后期的数学家Oresme在1360年就证明了这个级数是发散的。
1+1/2+1/3+1/4+1/5+1/6+1/7+1/8+…
1/2+1/2+(1/4+1/4)+(1/8+1/8+1/8+1/8)+…
注意后一个级数每一项对应的分数都小于调和级数中每一项,而且后面级数的括号中的数值和都为1/2,这样的1/2有无穷多个,所以后一个级数是趋向无穷大的,进而调和级数也是发散的。

只要证明其和极限存在即可.从第二项开始.1/(n^2)小于1/(n-1)-1/n.这样可以证明这个和的极限小于2.又这个级数显然是递增的,由单调有界数列必有收敛,可知原级数收敛

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值