证明过程
中世纪后期的数学家Oresme在1360年就证明了这个级数是发散的。
1+1/2+1/3+1/4+1/5+1/6+1/7+1/8+…
1/2+1/2+(1/4+1/4)+(1/8+1/8+1/8+1/8)+…
注意后一个级数每一项对应的分数都小于调和级数中每一项,而且后面级数的括号中的数值和都为1/2,这样的1/2有无穷多个,所以后一个级数是趋向无穷大的,进而调和级数也是发散的。
只要证明其和极限存在即可.从第二项开始.1/(n^2)小于1/(n-1)-1/n.这样可以证明这个和的极限小于2.又这个级数显然是递增的,由单调有界数列必有收敛,可知原级数收敛