极限类题之积分上限的函数的极限

极限类题之积分上限的函数的极限


所谓积分上限函数,无非就是自变量出现在了积分上限的位置上. 如果纯粹地让你求一个积分上限函数的极限,实际上就是求反常积分的值,可以先求原函数再求极限. 而我们在此讨论的,主要是积分上限函数出现在分式中的情况.一般来说,这种题型是 0 0 \frac 00 00型的. 我们一般不把积分上限函数当成定积分,计算出它的值再求极限,这样不仅太麻烦,而且对于许多题目来说是不可能的. 我们有更先进的方法,就是洛必达法则. 为什么这么说呢?因为你如果要用洛必达法则,就一定要对积分上限函数求导,而它的导数是很好得到的——积分上限函数 ϕ ( x ) = ∫ a x f ( t ) d t \phi(x) = \int_a^x{f(t)dt} ϕ(x)=axf(t)dt的导数,恰好就等于 f ( x ) f(x) f(x).这就大大的减少了你求原函数耽误的时间。

比如求极限 lim ⁡ x → 0 ∫ 0 x c o s t 2 d t x \lim_{x \to 0} \frac{\int_0^x{cost^2dt}}{x} \quad limx0x0xcost2dt这就是一个 0 0 \frac 00 00型的极限,洛必达法则的三个使用条件在这一部分题目中一般都是成立的. 开始分别求导,分母的导数就是 1,分子的导数就是 c o s x 2 cosx^2 cosx2,所以 lim ⁡ x → 0 ∫ 0 x c o s t 2 d t x = lim ⁡ x → 0 c o x 2 1 = 1. \lim_{x \to 0} \frac{\int_0^x{cost^2dt}}{x}=\lim_{x \to 0}\frac{cox^2}{1}=1. x0limx0xcost2dt=x0lim1cox2=1.
来一个稍难一点的:求极限 lim ⁡ x → 0 ∫ c o s x 1 e − t 2 d t x 2 \lim_{x \to 0} \frac{\int_{cosx}^1 {e^{{-t}^2}dt}}{x^2} limx0x2cosx1et2dt。这个也是 0 0 \frac 00 00型的极限,但分子上并不是积分上限函数. 为了给它求导方便,我们把它变成一个标准的积分上限函数. 首先,把下限的变量变到上限 lim ⁡ x → 0 ∫ c o s x 1 e − t 2 d t x 2 = − lim ⁡ x → 0 ∫ 1 c o s x e − t 2 d t x 2 \lim_{x \to 0} \frac{\int_{cosx}^1 {e^{{-t}^2}dt}}{x^2}=-\lim_{x \to 0} \frac{\int_1^{cosx} {e^{{-t}^2}dt}}{x^2} limx0x2cosx1et2dt=limx0x21cosxet2dt
其次容易观察,分子是由函数 y = − ∫ 1 u e − t 2 d t y=-\int_1^u {e^{{-t}^2}dt} y=1uet2dt(积分上限函数)和 u = c o s x u=cosx u=cosx复合而成的,根据复合函数的求导法则,就有 d y d x = d y d u × d u d x = − e − u 2 × ( s i n x ) = s i n x ⋅ e − c o s 2 x \frac {dy}{dx}=\frac {dy}{du}\times\frac {du}{dx}=-e^{{-u}^2}\times(sinx)=sinx\cdot e^{{-cos}^2x} dxdy=dudy×dxdu=eu2×(sinx)=sinxecos2x .分母的导数容易,是 2 x 2x 2x. 所以有 lim ⁡ x → 0 ∫ c o s x 1 e − t 2 d t x 2 = lim ⁡ x → 0 s i n x ⋅ e − c o s 2 x 2 x = lim ⁡ x → 0 s i n x 2 x ⋅ 1 e c o s 2 x = 1 2 e \lim_{x \to 0} \frac{\int_{cosx}^1{e^{{-t}^2}dt}}{x^2}=\lim_{x \to 0} \frac{sinx\cdot e^{{{-cos}^2}x}}{2x}=\lim_{x \to 0} \frac{sinx}{2x}\cdot \frac{1}{e^{{{cos}^2}x}}=\frac{1}{2e} x0limx2cosx1et2dt=x0lim2xsinxecos2x=x0lim2xsinxecos2x1=2e1
遇到 0 0 \frac 00 00型的积分上限函数,就考虑洛必达法则;对于不是标准形式的“伪”积分上限函数,通过交换积分上下限、复合函数分析等一系列手段,把它化成积分上限函数,再求导.

下面再举看简单的例子:
lim ⁡ x → ∞ 1 x ∫ 0 x ( 1 + t 2 ) e t 2 − x 2 d t = lim ⁡ x → ∞ ∫ 0 x ( 1 + t 2 ) ⋅ e t 2 d t x ⋅ e x 2 = lim ⁡ x → ∞ ( 1 + x 2 ) ⋅ e x 2 ( 1 + 2 x 2 ) ⋅ e x 2 = lim ⁡ x → ∞ 1 + x 2 1 + 2 x 2 = 1 2 \lim_{x \to \infty} \frac1x \int_0^x{(1+t^2)e^{{t}^{2}-x^{2}}dt}=\lim_{x \to \infty} \frac{\int_0^x {(1+t^2)\cdot e^{{t}^2}dt}}{x \cdot e^{{x}^2}}=\lim_{x \to \infty} \frac {(1+x^2) \cdot e^{{x}^2}}{(1+2x^2)\cdot e^{{x}^2}}=\lim_{x \to \infty }\frac{1+x^2}{1+2x^2}= \frac12 xlimx10x(1+t2)et2x2dt=xlimxex20x(1+t2)et2dt=xlim(1+2x2)ex2(1+x2)ex2=xlim1+2x21+x2=21

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值