高等数学-夹逼定理

夹逼定理


a n , b n , c n {a_n},{b_n},{c_n} an,bn,cn 为三个序列,并且存在一个自然数 N 0 N_0 N0 ,使得 c n ≤ a n ≤ b n , ∀ n ≥ N 0 {c_n}\leq{a_n}\leq{b_n},\forall n \geq N_0 cnanbn,nN0。 若 b n {b_n} bn c n {c_n} cn都有极限存在,并都等于 l l l,则 a n {a_n} an的极限存在,并且也等于 l l l
这个定理的内容,顾名思义,相信各位都可以很好的理解。现在废话不多说,下面给出几个例题来展示夹逼定理的应用。

1.求 lim ⁡ n → + ∞ ( 1 n 2 + 1 + 1 n 2 + 2 + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ + 1 n 2 + n ) \lim_{n \to +\infty}(\frac1{\sqrt {{n^2}+1}}+\frac1{\sqrt {{n^2}+2}}+······+\frac1{\sqrt {{n^2}+n}}) limn+(n2+1 1+n2+2 1+⋅⋅⋅⋅⋅⋅+n2+n 1)
哦对了,忘了说,在求极限的时候,我们有一个极限的四则运算法则,现暂不说明。就本题而言,和式里每一项都是无穷小量,并且不是有限个,故四则运算法则无效。这时候我们就需要考虑从另一个角度去处理该问题:我们可不可以通过放缩,将整个和式恰当的放大和缩小,再运用夹逼定理从侧面去求解其极限呢?显然是可以的,具体操作如下:
由于 n n 2 + n ≤ 1 n 2 + 1 + 1 n 2 + 2 + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ + 1 n 2 + n ≤ n n 2 + 1 \frac n{\sqrt {{n^2}+n}} \leq \frac1{\sqrt {{n^2}+1}}+\frac1{\sqrt {{n^2}+2}}+······+\frac1{\sqrt {{n^2}+n}} \leq\frac n{\sqrt {{n^2}+1}} n2+n nn2+1 1+n2+2 1+⋅⋅⋅⋅⋅⋅+n2+n 1n2+1 n 且 且 lim ⁡ n → + ∞ n n 2 + n = lim ⁡ n → + ∞ 1 1 + 1 n = 1 \lim_{n \to +\infty} \frac n{\sqrt {{n^2}+n} } = \lim_{n \to +\infty} \frac 1{\sqrt {1+\frac 1n}}=1 limn+n2+n n=limn+1+n1 1=1
(这里简单说明下,由于 lim ⁡ n → + ∞ n n 2 + n \lim_{n \to +\infty} \frac n{\sqrt {{n^2}+n}} limn+n2+n n属于 ∞ ∞ \frac \infty\infty 极限,故我们需要先约去趋于 ∞ \infty 的公因子方可运用四则运算法则,也即先将 n n 2 + n \frac n{\sqrt {{n^2}+n}} n2+n n变成 1 1 + 1 n \frac 1{\sqrt {1+\frac 1n}} 1+n1 1)。
lim ⁡ n → + ∞ n n 2 + 1 = lim ⁡ n → + ∞ 1 1 + 1 n 2 = 1 \lim_{n \to +\infty} \frac n{\sqrt {{n^2}+1}}=\lim_{n \to +\infty} \frac 1{\sqrt {1+\frac 1{n^2}}}=1 limn+n2+1 n=limn+1+n21 1=1
所以由夹逼定理可知 lim ⁡ n → + ∞ ( 1 n 2 + 1 + 1 n 2 + 2 + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ + 1 n 2 + n ) = 1 \lim_{n \to +\infty}(\frac1{\sqrt {{n^2}+1}}+\frac1{\sqrt {{n^2}+2}}+······+\frac1{\sqrt {{n^2}+n}})=1 limn+(n2+1 1+n2+2 1+⋅⋅⋅⋅⋅⋅+n2+n 1)=1

2.求 lim ⁡ n → + ∞ ( 1 n 2 + n + 1 + 1 n 2 + n + 2 + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ + 1 n 2 + n + n ) \lim_{n \to +\infty}(\frac1{{n^2}+n+1}+\frac1{{n^2}+n+2}+······+\frac1{{n^2}+n+n}) limn+(n2+n+11+n2+n+21+⋅⋅⋅⋅⋅⋅+n2+n+n1)仿照上题,由于

1 n 2 + n + n ⋅ ∑ k = 1 n k ≤ 1 n 2 + n + 1 + 1 n 2 + n + 2 + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ + 1 n 2 + n + n ≤ 1 n 2 + n + 1 ⋅ ∑ k = 1 n k \frac1{{n^2}+n+n} \cdot \sum_{k=1}^{n}k \leq \frac1{{n^2}+n+1}+\frac1{{n^2}+n+2}+······+\frac1{{n^2}+n+n} \leq\frac1{{n^2}+n+1}\cdot \sum_{k=1}^{n}k n2+n+n1k=1nkn2+n+11+n2+n+21+⋅⋅⋅⋅⋅⋅+n2+n+n1n2+n+11k=1nk

lim ⁡ n → + ∞ ( 1 n 2 + n + n ⋅ ∑ k = 1 n k ) = lim ⁡ n → + ∞ n + 1 2 ( n + 2 ) = lim ⁡ n → + ∞ 1 2 ( 1 + 1 n + 1 ) = 1 2 \lim_{n \to +\infty} (\frac1{{n^2}+n+n}\cdot \sum_{k=1}^{n}k)=\lim_{n \to +\infty} \frac{n+1}{2(n+2)}=\lim_{n \to +\infty} \frac1{2(1+\frac 1{n+1})}=\frac 12 limn+(n2+n+n1k=1nk)=limn+2(n+2)n+1=limn+2(1+n+11)1=21

lim ⁡ n → + ∞ ( 1 n 2 + n + 1 ⋅ ∑ k = 1 n k ) = lim ⁡ n → + ∞ n 2 + n 2 ( n 2 + n + 1 ) = 1 2 \lim_{n \to +\infty}(\frac1{{n^2}+n+1}\cdot \sum_{k=1}^{n}k) =\lim_{n \to +\infty}\frac{{n^2}+n}{2({n^2}+n+1)}=\frac12 limn+(n2+n+11k=1nk)=limn+2(n2+n+1)n2+n=21

(这里简单说明下, lim ⁡ n → + ∞ a n k + a 1 n k − 1 + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ + a k b n k + b 1 n k − 1 + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ + b k = a b ( a b ≠ 0 ) \lim_{n \to +\infty} \frac {an^k+a_1n^{k-1}+······+a_k}{bn^k+b_1n^{k-1}+······+b_k}=\frac ab(ab\neq0) limn+bnk+b1nk1+⋅⋅⋅⋅⋅⋅+bkank+a1nk1+⋅⋅⋅⋅⋅⋅+ak=ba(ab=0))

所以由夹逼定理可知 lim ⁡ n → + ∞ ( 1 n 2 + n + 1 + 1 n 2 + n + 2 + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ + 1 n 2 + n + n ) = 1 2 \lim_{n \to +\infty}(\frac1{{n^2}+n+1}+\frac1{{n^2}+n+2}+······+\frac1{{n^2}+n+n})=\frac 12 limn+(n2+n+11+n2+n+21+⋅⋅⋅⋅⋅⋅+n2+n+n1)=21

本题在放缩的时候,也可以是 1 ( n + 1 ) 2 ⋅ ∑ k = 1 n k ≤ 1 n 2 + n + 1 + 1 n 2 + n + 2 + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ + 1 n 2 + n + n ≤ 1 n 2 ⋅ ∑ k = 1 n k \frac1{(n+1)^2}\cdot\sum_{k=1}^{n}k \leq \frac1{{n^2}+n+1}+\frac1{{n^2}+n+2}+······+\frac1{{n^2}+n+n} \leq \frac 1{n^2}\cdot \sum_{k=1}^{n}k (n+1)21k=1nkn2+n+11+n2+n+21+⋅⋅⋅⋅⋅⋅+n2+n+n1n21k=1nk

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值