【笔记】3.离散傅里叶级数及其性质与其他变换的关系

Discrete Fourier Sequences

1. 离散傅里叶级数

可以计算周期序列的离散频率
x ( n ) x(n) x(n)是长度为N的有限长序列,以N为周期对 x ( n ) x(n) x(n)进行周期延拓得周期序列 x ~ ( n ) \tilde{x}(n) x~(n) , x ~ ( n ) \tilde{x}(n) x~(n)的离散傅里叶级数为 X ~ ( k ) \tilde{X}(k) X~(k)

DFS 变换对

D F S :   X ~ ( k ) = D F S [ x ~ ( n ) ] = ∑ n = 0 N − 1 x ~ ( n ) e − j 2 π N k n DFS: \ \tilde{X}(k)=DFS[\tilde{x}(n)] = \sum_{n=0}^{N-1}\tilde{x}(n)e^{-j\frac{2 \pi}{N}kn} DFS: X~(k)=DFS[x~(n)]=n=0N1x~(n)ejN2πkn
I D F S :   x ~ ( n ) = I D F S [ X ~ ( k ) ] = 1 N ∑ N − 1 X ~ ( k ) e j 2 π N k n IDFS: \ \tilde{x}(n)=IDFS[\tilde{X}(k)] =\frac{1}{N} \sum_{}^{N-1}\tilde{X}(k)e^{j\frac{2 \pi}{N}kn} IDFS: x~(n)=IDFS[X~(k)]=N1N1X~(k)ejN2πkn
W N = e − j 2 π N W_N = e^{-j\frac{2\pi}{N}} WN=ejN2π
性质 :共轭对称性: W N n = ( W N − n ) ∗ W_N^n=(W_N^{-n})^{*} WNn=(WNn)

表明将周期序列分解成N次谐波

  • k k k 次谐波为 e j 2 π N k n e^{j\frac{2\pi}{N}kn} ejN2πkn k k k 个谐波频率为 w k = 2 π N k , k = 0 , 1 , 2... N − 1 w_k = \frac{2\pi}{N}k, k=0,1,2...N-1 wk=N2πk,k=0,1,2...N1, 幅度为 1 N X ~ ( n ) \frac{1}{N}\tilde{X}(n) N1X~(n) k = = 1 k==1 k==1时候是基波分量

主值序列 x ( n ) = x ~ ( k ) R N ( N ) x(n) = \tilde{x}(k)R_N(N) x(n)=x~(k)RN(N)

x ~ ( n ) = x ( ( n ) ) N \tilde{x}(n) = x((n))_N x~(n)=x((n))N 表示将 x ( n ) x(n) x(n) 以N为周期进行周期延拓


2. 与z变换的关系

z变换 X ( z ) = ∑ n = 0 N − 1 x ( n ) z − n X(z)=\sum_{n={0}}^{N-1}x(n)z^{-n} X(z)=n=0N1x(n)zn

DFS变换 X ~ ( k ) = ∑ n = 0 N − 1 x ~ ( n ) e − j 2 π N n k = ∑ n = 0 N − 1 x ( n ) [ e j 2 π N k ] − n \tilde{X}(k)=\sum_{n=0}^{N-1}\tilde{x}(n)e^{-j\frac{2\pi}{N}nk} = \sum_{n=0}^{N-1}x(n)[e^{j\frac{2\pi}{N}k}]^{-n} X~(k)=n=0N1x~(n)ejN2πnk=n=0N1x(n)[ejN2πk]n
结论

X ~ ( k ) = X ( z ) ∣ z = e j 2 π N k \tilde{X}(k) = X(z)|_{z=e^{j\frac{2\pi}{N}k}} X~(k)=X(z)z=ejN2πk
周期序列 X ~ ( k ) \tilde{X}(k) X~(k)可以看成是 的一个周期 x ~ ( n ) \tilde{x}(n) x~(n)作 z变换,然后将 z z z变换在 z z z平面的单位圆上作等间隔 2 π N \frac{2\pi}{N} N2π抽样得到的结果


3.与DTFT的关系

DTFT
X ( e j w ) = ∑ n = 0 N − 1 x ( n ) e j w n X(e^{jw}) = \sum_{n=0}^{N-1}x(n)e^{jwn} X(ejw)=n=0N1x(n)ejwn
DFS
X ~ ( k ) = ∑ n = 0 N − 1 x ~ ( n ) e − j 2 π N n k = ∑ n = 0 N − 1 x ( n ) [ e − j 2 π N k ] n \tilde{X}(k)=\sum_{n=0}^{N-1}\tilde{x}(n)e^{-j\frac{2\pi}{N}nk}=\sum_{n=0}^{N-1}x(n)[e^{-j\frac{2\pi}{N}k}]^n X~(k)=n=0N1x~(n)ejN2πnk=n=0N1x(n)[ejN2πk]n
结论
X ~ ( k ) = X ( e j w ) ∣ w = 2 π N k \tilde{X}(k)=X(e^{jw})|_{w=\frac{2\pi}{N}k} X~(k)=X(ejw)w=N2πk
**DFS等价于对DTFT变换的结果以 w 1 = 2 π N w_1=\frac{2\pi}{N} w1=N2π为间隔进行采样的结果
其中 w 1 w_1 w1为频率的采样间隔,也被称为频率分辨率


4.离散傅里叶级数的性质

  1. 线性

    • D F S [ a ⋅ x ~ 1 ( n ) + b ⋅ x ~ 2 ( n ) ] = a ⋅ X ~ 1 ( k ) + b ⋅ X ~ 2 ( k ) DFS[a \cdot \tilde{x}_1(n) + b \cdot \tilde{x}_2(n)] = a \cdot \tilde{X}_1(k) + b \cdot \tilde{X}_2(k) DFS[ax~1(n)+bx~2(n)]=aX~1(k)+bX~2(k)
  2. 序列的移位

    • D F S [ x ~ ( n + m ) ] = W N − k m X ~ ( k ) ,     I D F S [ X ~ ( k + l ) ] = W N l n x ~ ( n ) DFS[\tilde{x}(n+m)]=W_N^{-km}\tilde{X}(k), \ \ \ IDFS[\tilde{X}(k+l)] = W_N^{ln}\tilde{x}(n) DFS[x~(n+m)]=WNkmX~(k),   IDFS[X~(k+l)]=WNlnx~(n)
  3. 调制特性

    • D F S [ W N n l x ~ ( n ) ] = X ~ ( k + l ) DFS[W_N^{nl}\tilde{x}(n)] = \tilde{X}(k+l) DFS[WNnlx~(n)]=X~(k+l)
  4. 共轭(反)对称分量

    • x ~ e ( n ) = 1 2 [ x ~ ( n ) + x ~ ∗ ( − n ) ] = 1 2 [ x ( ( n ) ) N + x ∗ ( ( N − n ) ) N ] \tilde{x}_e(n) = \frac{1}{2}[\tilde{x}(n)+\tilde{x}^*(-n)] = \frac{1}{2}[x((n))_N + x^*((N-n))_N] x~e(n)=21[x~(n)+x~(n)]=21[x((n))N+x((Nn))N] 反: x ~ o ( n ) = 1 2 [ x ~ ( n ) + x ~ ∗ ( − n ) ] = 1 2 [ x ( ( n ) ) N − x ∗ ( ( N − n ) ) N ] 反:\tilde{x}_o(n) = \frac{1}{2}[\tilde{x}(n)+\tilde{x}^*(-n)] = \frac{1}{2}[x((n))_N - x^*((N-n))_N] 反:x~o(n)=21[x~(n)+x~(n)]=21[x((n))Nx((Nn))N] x ~ e ( n ) = x ~ e ∗ ( − n ) ,    x ~ o ( n ) = − x ~ o ∗ ( − n ) ,    x ~ ( n ) = x ~ e ( n ) + x ~ o ( n ) \tilde{x}_e(n) = \tilde{x}_e^*(-n),\ \ \tilde{x}_o(n) = -\tilde{x}_o^*(-n),\ \ \tilde{x}(n)=\tilde{x}_e(n)+\tilde{x}_o(n) x~e(n)=x~e(n),  x~o(n)=x~o(n),  x~(n)=x~e(n)+x~o(n)
  5. 周期卷积和

    • 如果 Y ~ ( k ) = X 1 ~ ( k ) ⋅ X 2 ~ ( k ) \tilde{Y}(k) = \tilde{X_1}(k) \cdot \tilde{X_2}(k) Y~(k)=X1~(k)X2~(k) 则有 y ~ ( n ) = I D F S [ Y ~ ( k ) ] = ∑ m = 0 N − 1 x ~ 1 ( m ) x ~ 2 ( n − m ) = ∑ m = 0 N − 1 x ~ 2 ( m ) x ~ 1 ( n − m ) \tilde{y}(n)=IDFS[\tilde{Y}(k)] = \sum_{m=0}^{N-1}\tilde{x}_1(m)\tilde{x}_2(n-m) =\sum_{m=0}^{N-1}\tilde{x}_2(m)\tilde{x}_1(n-m) y~(n)=IDFS[Y~(k)]=m=0N1x~1(m)x~2(nm)=m=0N1x~2(m)x~1(nm)
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值