- 博客(10)
- 收藏
- 关注
原创 蛋白质特征描述符
过渡描述符T也由三个值组成:从极性群到中性群的过渡是一个极性残基后面跟着一个中性残基或一个中性残基后面跟着一个极性残基的百分比频率。中性基团与疏水基团之间的过渡和疏水基团与极性基团之间的过渡的定义方式类似。氨基酸组成(AAC)编码计算蛋白质或肽序列中每种氨基酸类型的频率。=0为例,有400个0间隔的残基对(即AA、AC、AD、…组成描述符由三个值组成:蛋白质的极性、中性和疏水残基的整体组成(百分比)。,5)分隔的氨基酸对的频率。每个描述符的值表示对应的残基对在蛋白质。P的蛋白质,Ntotal的值分别为。
2023-04-16 02:37:46 1463
翻译 iLearnPlus(中文)
iLearnPlus是一个用于学术目的的开源平台,可在GitHub - Superzchen/iLearnPlus上获得:iLearnPlus是第一个具有图形和基于web的用户界面的机器学习平台,可以使用核酸和蛋白质序列构建自动机器学习管道进行计算分析和预测。陈震,赵培,李晨,李福一,项东旭,陈永子,秋津达也,Roger J Daly, Geoffrey I Webb,赵全志,Lukasz Kurgan,宋江宁*,iLearnPlus:一个全面的自动化机器学习平台,用于核酸和蛋白质序列分析、预测和可视化。
2023-04-06 04:25:57 1181 1
转载 iLearnPlus使用方法
iLearnPlus is the first machine-learning platform with both graphical- and web-based user interface that enables the construction of automated machine-learning pipelines for computational analysis and predictions using nucleic acid and protein sequences. i
2023-04-05 22:43:39 433
翻译 iDNA-ABF:DNA甲基化可解释预测的多尺度深度生物语言学习模型
在这项研究中,我们提出了IDNA-ABF,一个多尺度的深度生物语言学习模型,能够仅基于基因组序列对DNA甲基化进行可解释的预测。基准比较表明,我们的IDNA-ABF在不同甲基化预测方面的性能优于最先进的方法。重要的是,我们展示了深度语言学习的力量,它可以从背景基因组中获取顺序和功能语义信息。此外,通过集成可解释的分析机制,我们很好地解释了模型所学到的内容,帮助我们建立了从发现重要的序列决定因素到深入分析它们的生物学功能的映射。关键词:DNA甲基化、深度学习、多尺度信息处理、可解释性分析。
2023-04-03 19:21:03 1060 1
原创 DNABERT代码运行
VMware Tools无法在Windows和Linux系统间复制粘贴文件。方法一:使用ps aux命令,直接kill掉锁死的进程。Ubuntu报错:“E:无法定位软件包”报错:zlib.h:没有那个文件或目录。(2)更新transformers。(1)卸载VMwareTools。把进程锁的缓存文件删除。(2)联网安装到桌面。解决:安装zlib包。
2023-03-24 15:53:35 775 6
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人