【实践】VLLM显存暴增 | 多卡推理 | 批量推理

文章讨论了在使用大型模型Llama3-8B时,显存占用异常高的问题,尤其是在vLLM中。通过调整gpu_memory_utilization参数和分析内存瓶颈,发现主要原因是KV缓存,尤其是PagedAttention机制导致的。文章还提到多卡环境下的内存使用情况和批量推理的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

显存占用问题

用两张A800跑Llama3-8B,按理说显存占用应该在16G以上,浮动2~3G,但是发现显存直接拉满了,一共花了140G
在这里插入图片描述
发现通过vllm.LLM创建模型时,有个参数控制GPU的使用量gpu_memory_utilization,其默认值为0.9,正好是140/160
gpu_memory_utilization改成0.15,也就是160*0.15 =21G时,模型运行正常,且显存占用压到了21G
在这里插入图片描述
但问题就来了,为什么16G的模型在设置gpu_memory_utilization=0.9的时候,会占用140G的显存呢,除了模型本身的参数之外,显存里面还装了什么东西?

在 vLLM 中,我们发现 LLM 服务的性能受到内存的瓶颈。在自回归解码过程中,LLM 的所有输入标记都会生成其注意键和值张量,并且这些张量保存在 GPU 内存中以生成下一个标记。这些缓存的键和值张量通常称为 KV 缓存。这些缓存特别大,LLaMA-13B 中的单个序列最多占用 1.7GB。而且其大小取决于序列长度,序列长度变化很大且不可预测,vllm引入PagedAttention</

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值