conda在指定目录下新环境的创建、激活

由于C盘爆满,新项目要安装的包又比较大,所以决定在E盘创建这个环境。

1.创建

首先打开conda的prompt,输入这个命令创建新环境。这里“E:\新加卷\schalably环境”是我自己指定的路径,即计划将这个环境下的所有配置文件都放在“schalably环境”文件夹中。

conda create --prefix=E:\新加卷\schalably环境 python=3.10

创建之后conda env list发现这个环境存在了但是没有名字,这是因为conda建立虚拟环境时通常是在默认目录中创建,在查找环境时也是在默认的目录中查找环境,如果新的环境创建在了这些目录之外,Conda 可能无法正确识别其名称。故输入conda config --show envs_dirs来查看一下当前的环境目录,发现没有“E:\新加卷\schalably环境”这个路径。

因此,使用conda config --append envs_dirs your_path将我们新的环境目录加进来。但是这里要注意一个问题,是输入:

conda config --append E:\新加卷

而非conda config --append E:\新加卷\schalably环境,即环境文件所在文件夹的上一级目录。这样就能将新环境的名称设置为“schalably环境”了,可以用conda env list查看。

2.激活

下一步就是激活环境,这时要注意的是不能直接用conda activate schalably环境,否则会报错:

原因还是那句话,conda激活的时候得先查找这个环境吧?虽然我们已经给它添加了新环境目录,但是还是要提醒它一下才找得到路径,否则它还是会在默认目录下查找,所以仍然是找不到的。

我们其实也可以设想一下如果没有这一步的话,我在很多不同的目录下都创建了环境时候,它要到哪里去查找呢?所以肯定要有一个默认查找目录,如果有特殊情况再提醒它,这样才更方便管理。

当然了,如果你想直接修改默认目录,也可以找到对应的方法,但这里就不展开了。

总之,这里所以我需要输入:

conda activate E:\新加卷\schalably环境

这样就成功激活啦~接下来就可以在新环境下工作了

### 如何在 Conda 新建的环境中成功安装 PyTorch 为了确保在 Conda 创建新环境中能够顺利安装 PyTorch,可以按照以下方法操作: #### 方法一:通过 Conda 安装 PyTorch 可以直接利用 Conda 的官方渠道来安装 PyTorch 及其依赖项。这种方法简单快捷,并能自动处理大部分兼容性问题。 ```bash conda install pytorch torchvision torchaudio cpuonly -c pytorch ``` 上述命令适用于 CPU 版本的 PyTorch 安装[^2]。如果需要 GPU 支持,则需替换 `cpuonly` 参数为具体的 CUDA 版本支持选项,例如: ```bash conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch ``` 此方式会根据所选 CUDA 工具包版本自动适配合适的 PyTorch 和相关库版本。 --- #### 方法二:手动下载并使用 Pip 安装 Whl 文件 当遇到官网下载不稳定或者特定需求时,可以选择从清华镜像源或其他可信站点获取预编译的 `.whl` 文件进行本地安装。 1. **访问清华镜像源页面** 前往 [PyTorch 中文文档](https://pytorch.org/get-started/previous-versions/) 或者直接进入 [清华开源软件镜像站](https://mirrors.tuna.tsinghua.edu.cn/pytorch/) 获取对应版本链接。 2. **选择适合的操作系统、Python 版本及硬件配置** 根据当前系统的架构(Windows/Linux/Mac)、已有的 Python 解释器版本以及是否有 NVIDIA 显卡支持等情况挑选匹配的文件名模式。 3. **执行具体安装指令** 将下载完成后的轮子文件放置到易于管理路径下,随后激活目标虚拟环境再运行如下脚本片段实现加载功能模块的目的: ```bash pip install /path/to/downloaded/torch-x.x.x.whl pip install /path/to/downloaded/torchvision-y.y.y.whl ``` 最后验证安装成果是否正常工作可尝试调用下面这段测试代码确认CUDA可用状态: ```python import torch print(torch.cuda.is_available()) ``` 以上过程均应保证处于同一隔离空间内以免发生冲突现象[^4]。 --- ### 注意事项 - 若先前存在旧版残留数据可能干扰新部署流程,建议遵照提示重新构建纯净区域后再继续后续步骤[^1]。 - 对于某些特殊场景比如地理信息系统(GIS)领域需要用到额外扩展组件GDAL的情况也记得同步引入关联资源[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值