1、项目介绍
(1)技术栈:
Flask框架+LSTM算法 Vue框架 scrapy爬虫、协同过滤推荐算法(基于用户+基于物品)音乐爬虫 机器学习、Echarts 深度学习神经网络LSTM算法(情感分析)
通过使用Flask框架搭建后端服务器,Vue框架构建前端界面,scrapy爬虫进行数据采集,以及协同过滤推荐算法实现个性化推荐,可以打造一个功能完善的网易云音乐数据采集分析可视化推荐系统。用户可以通过该系统查看音乐排行榜、发现新歌曲、获取个性化推荐等,提升音乐的体验和发现乐趣。
2、项目界面
(1)音乐数据可视化大屏展示
3、项目说明
(1)技术栈:Flask框架、Vue框架、scrapy爬虫、协同过滤推荐算法
网易云音乐数据采集分析可视化推荐系统是一个基于网易云音乐平台的应用,主要功能包括数据采集、数据分析和推荐系统。
-
数据采集:使用scrapy爬虫框架对网易云音乐平台进行数据采集,包括歌曲信息、歌手信息、用户信息等。通过爬取数据可以建立一个完整的音乐数据库。
-
数据分析:使用Python进行数据分析,对采集到的音乐数据进行处理和统计,得出各种有意义的指标和特征。可以分析歌曲的热度、用户的喜好等,为后续的推荐系统提供基础。
-
可视化:使用Vue框架构建前端界面,将数据分析的结果以可视化的方式展示给用户。可以使用各种图表和图形展示歌曲排行榜、用户喜好分布等信息,提高用户体验。
-
推荐系统:使用协同过滤推荐算法,根据用户的历史行为和其他用户的行为数据,为用户推荐相关的歌曲和歌手。可以根据用户的喜好进行个性化推荐,提高用户的满意度和粘性。
总结:通过使用Flask框架搭建后端服务器,Vue框架构建前端界面,scrapy爬虫进行数据采集,以及协同过滤推荐算法实现个性化推荐,可以打造一个功能完善的网易云音乐数据采集分析可视化推荐系统。用户可以通过该系统查看音乐排行榜、发现新歌曲、获取个性化推荐等,提升音乐的体验和发现乐趣。
(2)协同过滤推荐算法