双指针模板
双指针主要分为:
- 快慢指针:主要是成环问题
- 左右指针:数组和字符串问题
- 滑动窗口:主要是子串问题
双指针是一个非常常用的算法,核心思路是优化朴素算法或者暴力算法,几乎都可以优化到o(n)的时间复杂度。我们一般定义i,j两个作为指针,根据题意来处理i,j。大部分题目都使用以下模板:
for(int i=0,j=0;i<n;i++
{
while(j<i&&check(i,j)) j++;
//根据题意逻辑处理代码
}
check(i,j)是根据题意定义:当i和j满足什么条件时j++/j–;
例题1:分解单词
给定一段字符串,将其中的单词依次输出在每行。
#include<iostream>
#include<string.h>
using namespace std;
int main()
{
char str[1000];
gets(str);
int n=strlen(str);
for(int i=0;i<n;i++)
{
int j=i;
while(j<n&&str[j]!=' ') j++;
//这道题的具体逻辑
for(int l=i;l<j;l++)
cout<<str[l];
cout<<endl;
i=j;
}
return 0;
}
例题二:AcWing 799. 最长连续不重复子序列
- 核心思路:
遍历数组a中的每一个元素a[i], 对于每一个i,找到j使得双指针[j, i]维护的是以a[i]结尾的最长连续不重复子序列,长度为i - j + 1, 将这一长度与r的较大者更新给r。 对于每一个i,如何确定j的位置:由于[j, i - 1]是前一步得到的最长连续不重复子序列,所以如果[j, i]中有重复元素,一定是a[i],因此右移j直到a[i]不重复为止(由于[j, i - 1]已经是前一步的最优解,此时j只可能右移以剔除重复元素a[i],不可能左移增加元素,因此,j具有“单调性”、本题可用双指针降低复杂度)。 用数组s记录子序列a[j ~ i]中各元素出现次数,遍历过程中对于每一个i有四步操作:cin元素a[i] ->将a[i]出现次数s[a[i]]加1 -> 若a[i]重复则右移j(s[a[j]]要减1) -> 确定j及更新当前长度i - j +1给r。
- 注意细节:
- 当a[i]重复时,先把a[j]次数减1,再右移j。
#include<iostream>
using namespace std;
const int N=100010;
int n;
int s[N],a[N];
int main()
{
cin>>n;
for(int i=0;i<n;i++)
cin>>a[i];
int res=0;
for(int i = 0, j = 0;i< n;i ++)
{
s[a[i]]++;
while(s[a[i]] > 1)
{
--s[a[j++]];
}
res=max(res,i - j + 1);
}
cout << res;
return 0;
}
例题3:ACWing800. 数组元素的目标和
(双指针) O(n)O(n)
- i从 0开始 从前往后遍历
- j从 m - 1开始 从后向前遍历
- 和纯暴力的O(n2)O(n2) 算法的区别就在于
j指针不会回退
#include<iostream>
using namespace std;
int a[100010],b[100010];
int main()
{
int n,m,q;
cin>>n>>m>>q;
for(int i=0;i<n;i++)
cin>>a[i];
for(int i=0;i<m;i++)
cin>>b[i];
for(int i=0,j=m-1;i<n;i++)
{
while(j>=0&&a[i]+b[j]>q) j--;
if(j>=0&&a[i]+b[j]==q)
cout<<i<<" "<<j;
}
return 0;
}
总结
双指针技巧可以分为两类,一类是「快慢指针」,一类是「左右指针」。前者解决主要解决链表中的问题,比如典型的判定链表中是否包含环;后者主要解决数组(或者字符串)中的问题,比如二分查找。