快速幂取模

该文章介绍了使用二进制原理优化指数运算的方法,称为快速幂(KSM)算法。在C++中,通过不断地右移指数并根据二进制位更新底数和结果,可以高效地计算大数的幂并模运算。算法的核心在于每次只处理指数的最低位,从而减少了计算次数。
摘要由CSDN通过智能技术生成

要背的模板

3^5(base^power)
将5写成2进制,即 101,从右往左第 i 位为base的 2 ^ i 倍
即3^5 = ( 3^(2^0) ) * ( 3^(2^2) )

3^15 = 3^(1111) = ( 3^(2^0) ) * ( 3^(2^1) )*( 3^(2^2) ) * ( 3^(2^3) )

基于二进制原理,ans初始为1,然后不断对power右移,如果power末位为1,ans乘上power这一位对应的base (每右移一位base乘2)

const int mod=1e9+7;
typedef long long ll;

ll ksm(ll base,ll power){   //底数是base,指数是power
    ll ans=1;       //记录结果
    while(power){
        if(power&1){        //二进制末位是1,把ans乘上当前的base
            ans=(ans*base)%mod;
        }
        power>>=1;          //每次power二进制右移一位
        base=(base*base)%mod;       //base代表的值翻倍
    }
    return ans;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Auroraaaaaaaaaaaaa

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值