快速幂取模算法

  • 所谓的快速幂,实际上是快速幂取模的缩写,简单的说,就是快速的求一个幂式的模(余)。在程序设计过程中,经常要去求一些大数对于某个数的余数,为了得到更快、计算范围更大的算法,产生了快速幂取模算法。我们先从简单的例子入手:
  • 求(a^b)%c=?

算法1.直接设计这个算法: 

int ans = 1;
for(int i = 1;i<=b;i++)
{
   ans = ans * a;
}
ans = ans % c;
  • 缺点:这个算法存在着明显的问题,如果a和b过大,很容易就会溢出。
  • 我们先来看看第一个改进方案:在讲这个方案之前,要先看这样一个公式:ab mod c = (a mod c)c mod c
  • 于是不用思考的进行了改进:

 算法2.改进算法:

int ans = 1;
a = a % c; //加上这一句
for(int i = 1;i<=b;i++)
{
   ans = ans * a;
}
ans = ans % c;
  • 读者应该可以想到,既然某个因子取余之后相乘再取余保持余数不变,
  • 那么新算得的ans也可以进行取余,所以得到比较良好的改进版本。

算法3.进一步改进算法: 

int ans = 1;
a = a % c; //加上这一句
for(int i = 1;i<=b;i++)
{
   ans = (ans * a) % c;//这里再取了一次余
}
ans = ans % c;
  •  这个算法在时间复杂度上没有改进,仍为O(b),不过已经好很多的
  • 但是在c过大的条件下,还是很有可能超时,所以,我们推出以下的快速幂算法。

 算法4.快速幂算法:

快速幂算法依赖于以下明显的公式:

int PowerMod(int a, int b, int c)
{
    int ans = 1;
    a = a % c;
    while(b>0) {
        if(b % 2 = = 1)
        ans = (ans * a) % c;
        b = b/2;
        a = (a * a) % c;
    }
    return ans;
}

或者这样写:

ll smPow_Mod(ll a,ll b,ll mod)
{
    ll res=1;
    while(b)
    {
        if(b&1)
        {
            res=(res*a)%mod;

        }
        a=(a*a)%mod;
        b>>=1;
    }
    return res;
}

本算法的时间复杂度为O(logb),能在几乎所有的程序设计(竞赛)过程中通过,是目前最常用的算法之一。 

ps:文章在录自:滴答滴答

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值