从0开始深度学习(3)——概率

1 基本概率论

  • 大数定律(law of large numbers):随着投掷次数的增加,这个估计值会越来越接近真实的潜在概率。
  • 从概率分布中抽取样本的过程称为抽样(sampling)
  • 将概率分配给一些离散选择的分布称为多项分布(multinomial distribution)

1.1 概率论公理

概率(probability)可以被认为是将集合映射到真实值的函数。
在给定的样本空间
S
中,事件A的概率, 表示为P(A),满足以下属性:
在这里插入图片描述

1.2 随机变量

  • 离散随机变量(discrete random variable):取值为有限个或可数无限个值的随机变量称为离散随机变量。这些值通常是整数或有限范围内的离散点。例如:抛硬币的次数、骰子的点数、某段时间内到达的顾客数量等

  • 连续随机变量(continuous random variable):取值为实数区间上的任何值的随机变量称为连续随机变量。这些值通常是无限可分的,并且可以在一定范围内取任意值</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

青石横刀策马

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值