上节了解了卷积层的原理,本节以图像为例,介绍一下它的实际应用
1 互相关运算
严格来说,卷积层是个错误的叫法,因为它所表达的运算其实是互相关运算(cross-correlation)。
首先,我们暂时忽略通道(第三维)这一情况,看看如何处理二维图像数据和隐藏表示。输入的二维张量形状是 3 × 3 3 \times 3 3×3,卷积核的形状是 2 × 2 2\times2 2×2,计算如下图:
在二维互相关运算中,卷积窗口从输入张量的左上角开始,从左到右、从上到下滑动。 当卷积窗口滑动到新一个位置时,包含在该窗口中的部分张量与卷积核张量进行按元素相乘,计算步骤如下: 0 × 0 + 1 × 1 + 3 × 2 + 4 × 3 = 19 , 1 × 0 + 2 × 1 + 4 × 2 + 5 × 3 = 25 , 3 × 0 + 4 × 1 + 6 × 2 + 7 × 3 = 37 , 4 × 0 + 5 × 1 + 7 × 2 + 8 × 3 = 43. \begin{split}0\times0+1\times1+3\times2+4\times3=19,\\ 1\times0+2\times1+4\times2+5\times3=25,\\ 3\times0+4\times1+6\times2+7\times3=37,\\ 4\times0+5\times1+7\times2+8\times3=43.\end{split} 0×0+1×1+3×2+4×3=19,1×0+2×1+4×2<