1、什么是大数据?
大数据(big data),IT行业术语,是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。由IBM提出的大数据的五个特征(5V):Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)、Veracity(真实性)。
2、什么是大数据生态?
大数据生态(BigData Ecology)。网络化数据社会与现实社会的有机融合、互动以及协调,形成大数据感知、管理、分析与应用服务的新一代信息技术架构和良性增益的闭环生态系统。
大数据的核心是Hadoop生态系统。我们通常可能会根据特定的用特来描述软件工具,比如:Oracle是数据库、Apache Tomcat 是 Web 服务器。不过,Hadoop就有些复杂,Hadoop 是大量工具集合,这些工具可以协同工作来完成特定的任务。可以说Hadoop是一个数据管理系统,将海量的结构化和非结构化数据聚集在一起,这些数据涉及传统企业数据栈的几乎每一个层次,其定位是在数据中心占据核心地位。也可以说,Hadoop 是大规模并行执行框架,把超级计算机的能力带给大众,致力于加速企业级应用的执行。由于 Hadoop 提供如此广泛的功能,可以适用于解决大量问题,也可以说,Hadoop 是基础框架。Hadoop 提供所有这些功能,因此应该将 Hadoop 归类为一个生态系统,它包含大量的组件,从数据存储到数据集成、数据处理以及数据分析师的专用工具。
2.1 大数据生态(Hadoop)
MapReduce
主要由Google Reduce而来,它简化了大型数据的处理,是一个并行的,分布式处理的编程模型。
hadoop2.0它是基于YARN框架构建的。YARN的全称是Yet-Another-Resource-Negotiator。Yarn可以运用在S3|Spark等上。
HDFS
它是由Google File System而来,全称是Hadoop Distributed File System,是Hadoop的分布式文件系统,有许多机器组成的,可以存储大型数据文件。
它是由NameNode和DataNode组成,NameNode可以配置成HA(高可用),避免单点故障。一般用Zookeeper来处理。两个NameNode是同步的。
Hive
它是Hadoop的数据仓库(DW),它可以用类似SQL的语言HSQL来操作数据,很是方便,主要用来联机分析处理OLAP(On-Line Analytical Processing),进行数据汇总|查询|分析。
HBase
它是由Google BigTable而来。是Hadoop的数据库。HBase底层还是利用的Hadoop的HDFS作为文件存储系统,可以利用Hadoop的MR来处理HBase的数据,它也通常用Zookeeper来做协同服务。
Zookeeper
它是一个针对大型分布式系统的可靠协调系统,在Hadoop|HBase|Strom等都有用到,它的目的就是封装好复杂易出错的关键服务,提供给用户一个简单|可靠|高效|稳定的系统。提供配置维护|分布式同步|名字服务等功能,Zookeeper主要是通过lead选举来维护HA或同步操作等
Pig
它提供一个引擎在Hadoop并行执行数据流。它包含了一般的数据操作如join|sort|filter等,它也是使用MR来处理数据。
Mahout
它是机器学习库。提供一些可扩展的机器学习领域经典算法的实现,目的是帮助开发人员更加方便快捷地创建智能应用程序。Mahout包含许多实现,包括聚类、分类、推荐算法等。
2.2 大数据架构
大数据架构师,是架构师的一种。如何学习才能成为大数据架构师?从数据库SQL到NoSQL,从新手到大师?我们来看这篇现身说法的文章。
先扯一下大数据的4V特征:
1、数据量大,TB->PB
2、数据类型繁多,结构化、非结构化文本、日志、视频、图片、地理位置等;
3、商业价值高,但是这种价值需要在海量数据之上,通过数据分析与机器学习更快速的挖掘出来;
4、处理时效性高,海量数据的处理需求不再局限在离线计算当中。
现如今,正式为了应对大数据的这几个特点,开源的大数据框架越来越多,越来越强,先列举一些常见的:
· 文件存储:Hadoop HDFS
· 离线计算:Hadoop MapReduce、Spark
· 流式、实时计算:Storm、Spark Streaming
· K-V、NOSQL数据库:HBase、Redis、MongoDB
· 资源管理:YARN、Mesos
· 日志收集:Flume、Scribe、Logstash、Kibana
· 消息系统:Kafka、StormMQ、ZeroMQ、RabbitMQ
· 查询分析:Hive、Impala、Presto、Phoenix、SparkSQL、Flink、Kylin、Druid
· 分布式协调服务:Zookeeper
· 集群管理与监控:Ambari、Ganglia、Nagios、Cloudera Manager
· 数据挖掘、机器学习:Mahout、Spark MLLib
· 数据同步:Sqoop
· 任务调度:Oozie
2.3 Hadoop快速入门(官方有文档说明最新版本)
支持的平台:
- GNU/Linux作为开发和生产平台受到支持。Hadoop已经在具有2000个节点的GNU/Linux集群上进行了演示。
- Windows也是一个受支持的平台,但以下步骤仅适用于Linux。要在Windows上设置Hadoop,请参见wiki页面。
所需软件:
Linux所需的软件包括:
- JAVA™ 必须安装。HadoopJavaVersions中描述了推荐的Java版本。
- 如果要使用可选的启动和停止脚本,则必须安装ssh并运行sshd才能使用管理远程Hadoop守护进程的Hadoop脚本。此外,还建议安装pdsh以更好地管理ssh资源。
安装软件:
如果您的集群没有必要的软件,则需要安装它。
例如,在Ubuntu Linux上:
$ sudo apt-get install ssh $ sudo apt-get install pdsh
下载:
要获得Hadoop发行版,请从一个Apache下载镜像下载最近的稳定版本。
准备启动Hadoop集群:
解压缩下载的Hadoop发行版。在发行版中,编辑文件etc/hadoop/hadoop-env.sh,定义一些参数如下:
# set to the root of your Java installation export JAVA_HOME=/usr/java/latest
请尝试以下命令:
$ bin/hadoop
这将显示hadoop脚本的用法文档。
现在,您可以使用以下三种支持的模式之一启动Hadoop群集:
独立操作:
默认情况下,Hadoop被配置为在非分布式模式下作为单个Java进程运行。这对调试很有用。
下面的示例复制解压缩的conf目录作为输入,然后查找并显示给定正则表达式的每个匹配项。输出被写入给定的输出目录。
$ mkdir input $ cp etc/hadoop/*.xml input $ bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-3.3.1.jar grep input output 'dfs[a-z.]+' $ cat output/*
伪分布式操作:
Hadoop还可以以伪分布式模式在单个节点上运行,其中每个Hadoop守护进程在单独的Java进程中运行。
配置
使用以下选项:
etc/hadoop/core-site.xml:
<configuration> <property> <name>fs.defaultFS</name> <value>hdfs://localhost:9000</value> </property> </configuration>
etc/hadoop/hdfs-site.xml:
<configuration> <property> <name>dfs.replication</name> <value>1</value> </property> </configuration>
安装无密码ssh:
现在检查您是否可以使用ssh连接到本地主机,而无需密码短语:
$ ssh localhost
如果在没有密码短语的情况下无法ssh到localhost,请执行以下命令:
$ ssh-keygen -t rsa -P '' -f ~/.ssh/id_rsa $ cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys $ chmod 0600 ~/.ssh/authorized_keys
执行
以下说明用于在本地运行MapReduce作业。如果要在上YARN执行作业,参见 YARN on Single Node.
格式化文件系统:
$ bin/hdfs namenode -format启动NameNode守护程序和DataNode守护程序:
$ sbin/start-dfs.shhadoop守护程序日志输出被写入$hadoop\u log\u DIR目录(默认为$hadoop\u HOME/logs)。
浏览NameNode的web界面;默认情况下,它在以下位置可用:
- NameNode - http://localhost:9870/
生成执行MapReduce作业所需的HDFS目录:
$ bin/hdfs dfs -mkdir /user $ bin/hdfs dfs -mkdir /user/<username>将输入文件复制到分布式文件系统:
$ bin/hdfs dfs -mkdir input $ bin/hdfs dfs -put etc/hadoop/*.xml input运行提供的一些示例:
$ bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-3.3.1.jar grep input output 'dfs[a-z.]+'检查输出文件:将输出文件从分布式文件系统复制到本地文件系统并进行检查:
$ bin/hdfs dfs -get output output $ cat output/*或者查看分布式文件系统上的输出文件:
$ bin/hdfs dfs -cat output/*完成后,使用以下命令停止守护程序:
$ sbin/stop-dfs.sh
YARN 在单个节点上
通过设置一些参数并另外运行ResourceManager守护程序和NodeManager守护程序,可以在YARN上以伪分布式模式运行MapReduce作业。
以下指令假设上述指令的1.~4.步骤已经执行。
-
配置参数如下:
etc/hadoop/mapred-site.xml:
<configuration> <property> <name>mapreduce.framework.name</name> <value>yarn</value> </property> <property> <name>mapreduce.application.classpath</name> <value>$HADOOP_MAPRED_HOME/share/hadoop/mapreduce/*:$HADOOP_MAPRED_HOME/share/hadoop/mapreduce/lib/*</value> </property> </configuration>
etc/hadoop/yarn-site.xml:
<configuration> <property> <name>yarn.nodemanager.aux-services</name> <value>mapreduce_shuffle</value> </property> <property> <name>yarn.nodemanager.env-whitelist</name> <value>JAVA_HOME,HADOOP_COMMON_HOME,HADOOP_HDFS_HOME,HADOOP_CONF_DIR,CLASSPATH_PREPEND_DISTCACHE,HADOOP_YARN_HOME,HADOOP_HOME,PATH,LANG,TZ,HADOOP_MAPRED_HOME</value> </property> </configuration>
-
启动ResourceManager守护程序和NodeManager守护程序:
$ sbin/start-yarn.sh
- 浏览ResourceManager的web界面;默认情况下,它在以下位置可用:ResourceManager - http://localhost:8088/
-
运行MapReduce作业。
-
完成后,使用以下命令停止守护程序:
$ sbin/stop-yarn.sh
全分布式操作:
有关设置完全分布式的非平凡集群的信息,请参阅集群设置。