- 博客(14)
- 收藏
- 关注
原创 算法笔记 —— 二分答案
一、二分答案:在答案可能的范围内[L,R]二分查找答案,检查当前答案是否满足题目的条件要求,根据判断结果更新查找区间。二、题目类型:求最大值、最小值、求满足条件的最大值或最小值、最大值中的最小值、最小值中的最大值、靠近的值。三、模板:yxc 1.求符合条件的最小值://求符合条件中的最小值bool check(int x){}// 检查x是否满足条件// 区间[l, r]被划分成[l, mid]和[mid + 1, r]时使用int sreach(int l,..
2022-02-21 18:45:14 1929
原创 opencv实战项目(1)—— 虚拟键盘
1.导入库2.链接摄像头3.进行手势跟踪4.创建按键类5.计算按键大小6.绘制键盘7.获取手部信息8.设置触碰按键的变化9.设置点击按键的变化10.规定每个按键的功能11.显示字符12.显示一帧图片
2022-01-23 18:00:35 4627 1
原创 SVM支持向量机学习笔记(1) —— 线性可分支持向量机与硬间隔最大化
一、什么是支持向量机支持向量机就是要通过找支持向量来找划分超平面。考虑一个二类分类问题,分离超平面将特征空间划分为两部分,一部分是正类,一部分是负类。一般地,当训练数据集线性可分时,存在无穷个分离超平面可将两类数据正确分开。 感知机利用误分类最小的策略,求得分离超平面,不过这时的解有无穷多个。线性可分支持向量机利用间隔最大化求最优分离超平面,这时,解是唯一的。 1.线性可分支持向量机:给定线性可分训练数据集,通过间隔最大化或等价地求解相应的凸二次规划问题学习得到的分离超平面为 :2.
2022-01-07 18:15:56 1085
原创 基于python的opencv项目实战笔记(七)—— 图像直方图
import cv2 as cvimport matplotlib.pyplot as pltimport numpy as npdef cv_show(name,img): cv.imshow(name,img) cv.waitKey(0) cv.destroyAllWindows()#直方图定义def cv_hist(img): #第二个参数[0]为灰度图,[0][1][2]为彩色图像分别对应BGR。 #第三个参数为掩模图像。统整幅图像的直方图就把它为.
2022-01-03 21:31:35 287
原创 吴恩达深度学习课程笔记(二)—— 深度卷积模型:案例研究
1、经典神经网络LeNet-5模型1.假设输入图像的大小是32×32×1,我们用6个大小为5×5的过滤器,步幅为1,padding为0,对其进行一次卷积操作,输出图像的尺寸为28×28×6。2.使用平均池化层,过滤器宽度为2,步幅为2,将图像缩小一半,故为14×14×6,使用16个大小为 5×5的过滤器,步幅为1,padding为0,对其进行一次卷积操作,输出图像的尺寸为10×10×16。3.使用平均池化层,步幅为2,将图像的尺寸缩小为5×5×16。4.将5×5×16的图像展开,得到
2022-01-01 13:30:19 2372
原创 基于python的opencv项目实战笔记(六)—— 图像金字塔与轮廓检测
import cv2 as cvimport matplotlib.pyplot as pltimport numpy as npdef cv_show(name,img): cv.imshow(name,img) cv.waitKey(0) cv.destroyAllWindows()#高斯金字塔#上采样def cv_pyrUp(img): up=cv.pyrUp(img) cv_show('up',up) print(up.shape)#下.
2021-12-29 20:54:19 1862
原创 基于python的opencv项目实战笔记(五)—— Canny边缘检测
import cv2 as cvimport matplotlib.pyplot as pltimport numpy as npdef cv_show(name,img): cv.imshow(name,img) cv.waitKey(0) cv.destroyAllWindows()#Canny边缘检测算法#(1)使用高斯滤波器,以平滑图像,滤除噪声#(2)计算图像中每个像素点的梯度强度变化#(3)应用非极大值抑制,以消除边缘检测带来的杂散响应#(4)应用双阈值.
2021-12-29 14:20:39 1719
原创 基于python的opencv项目实战笔记(四)—— 图像梯度处理
import cv2 as cvimport matplotlib.pyplot as pltimport numpy as npdef cv_show(name,img): cv.imshow(name,img) cv.waitKey(0) cv.destroyAllWindows()#Sobel算子:右-左,下-上def cv_soble(img): #第二个参数为图像的深度,第三个和第四个分别表示dx,dy水平和竖直方向,ksize是Sobel算子的大小(一.
2021-12-29 00:05:47 1589
原创 基于python的opencv项目实战笔记(三)—— 图像形态学处理
import cv2 as cvimport matplotlib.pyplot as pltimport numpy as npdef cv_show(name,img): cv.imshow(name,img) cv.waitKey(0) cv.destroyAllWindows()def cv_erode(img): kernel=np.ones((5,5),np.uint8) #iterations为迭代次数 erode1 = cv.erod.
2021-12-28 22:58:34 424
原创 基于python的opencv项目实战笔记(二)—— 阈值与平滑处理
import cv2 as cvimport matplotlib.pyplot as pltimport numpy as npdef cv_show(name,img): cv.imshow(name,img) cv.waitKey(0) cv.destroyAllWindows()def cv_threshold(img): #第一个参数为原始图像(通常来说是灰度图),第二个为阈值(大于阈值会怎样,小于会怎样),第三个为最大数据(一般为255),第四个参数(怎.
2021-12-26 23:14:47 735
原创 基于python的opencv项目实战笔记(一)—— 图像基本操作
import cv2 as cvimport matplotlib.pyplot as pltimport numpy as npdef cv_show(name,img): cv.imshow(name,img) print(img)#输出各像素点 print(img.shape)#输出h,w,c print(type(img))#输出格式 print(img.size)#像素点的个数 print(img.dtype)#数据类型 cv.wai.
2021-12-26 18:23:18 1040
原创 吴恩达深度学习课程笔记(一)—— 卷积神经网络基础
在运行神经网络对图像进行处理时,对于64*64大小的图像,图像就有12288个参数,而对于一张1000*1000大小的图像,参数更是多达300万个,假设隐藏层有1000个神经元,那么参数就是300万*1000个,300亿个参数,可想而知数据量过于庞大。
2021-12-26 13:09:15 657
转载 梯度下降笔记
首先我们可以把梯度下降拆解为梯度+下降,那么梯度可以理解为导数(对于多维可以理解为偏导),那么合起来变成了:导数下降,那问题来了,导数下降是干什么的?这里我直接给出答案:梯度下降就是用来求某个函数最小值时自变量对应取值其中这句话中的某个函数是指:损失函数(cost/loss function),直接点就是误差函数。一个算法不同参数会产生不同拟合曲线,也意味着有不同的误差。损失函数就是一个自变量为算法的参数,函数值为误差值的函数。所以梯度下降就是找让误差值最小时候算法取的参数。在机器学习中有一类算法就是产
2021-11-15 23:38:18 78
转载 2021-11-07 机器学习笔记(1)
机器学习的定义:从广义上来说,机器学习是一种能够赋予机器学习的能力以此让它完成直接编程无法完成的功能的方法。但从实践的意义上来说,机器学习是一种通过利用数据,训练出模型,然后使用模型预测的一种方法。 “训练”与“预测”是机器学习的两个过程,“模型”则是过程的中间输出结果,“训练”产生“模型”,“模型”指导 “预测”。 机器学习方法是计算机利用已有的数据(经验),得出了某种模型(迟到的规律),并利用此模型预测未来(是否迟到)的一种方法。监督学习(supervise...
2021-11-07 23:04:27 230
空空如也
arm-keil汇编运行报错,这种情况怎么解决呢?
2022-09-30
TA创建的收藏夹 TA关注的收藏夹
TA关注的人