吴恩达深度学习课程笔记(一)—— 卷积神经网络基础

一、计算机视觉


在运行神经网络对图像进行处理时,对于64*64大小的图像,图像就有12288个参数,而对于一张1000*1000大小的图像,参数更是多达300万个,假设隐藏层有1000个神经元,那么参数就是300万*1000个,300亿个参数,可想而知数据量过于庞大。

为解决此问题,我们需要采用卷积计算。

二、边缘检测


①用神经网络的前几层来检测图像边缘,然后用后面的层检测特征,可以完成对一个完整物体进行的检测。

②它还可以进行垂直的线和水平的线的检测。


一个6*6的图像,构造一个3*3的滤波器进行卷积运算,可以得到一幅4*4的图像。


图中,0表示图像暗色区域,10为图像亮色区域,用一个尺寸为3*3的滤波器对图像进行卷积后,即可得到的图像中间亮,两边暗,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值