算法流程:
注意一 特征值不同
PT要有两个不同的特征值,这样的PT可以对角化。由于NT与PT是相似的
所以NT也可以对角化。由于PT和NT有两个不同的特征值,所以其特征向量线性无关,XT、YT这两个特征向量矩阵可逆
注意二 方程组之间的关系,不能直接求解出c1c2 c1 c2
由这四个式子推导出whitt中的四个方程。
可见四个式子并无法解出四个未知数,因为四个未知数都是直接用比例表达的方式,所以最后肯定有一个自由项。除非线性方程组有常数项。例子如下
step2
再根据T矩阵第一个元素是1得到c1和c2带常数项的关系,这样结合比例关系可以求解c1和c2
注意三。 防止c2/c1无唯一解
分母为0,是无唯一解,不是无解
首先,我们通过一个简单的例子来说明为什么分母为0时,表达式没有唯一解,而不是无解。
考虑一个简单的数学表达式:
ba
当 b=0 时,这个表达式有一个唯一确定的解,即 a 除以 b 的结果。
然而,当 b=0 时,这个表达式在数学上是没有定义的,因为任何数除以0都是未定义的。但这里的关键是,它并不是“无解”,而是“没有唯一解”或“未定义”。为什么这么说呢?
-
未定义与无解的区别:
- 未定义:指的是表达式本身在某种条件下没有明确的数学意义。例如,0/0、∞/∞ 或任何形式的 a/0(其中 a=0)都是未定义的。
- 无解:通常用于描述方程或不等式等,在给定条件下找不到满足条件的解。例如,方程 x2+1=0 在实数范围内无解,因为不存在实数 x 使得 x2+1=0 成立。
-
为什么分母为0时没有唯一解:
当分母为0时,表达式 ba 实际上可以看作是在询问“a 是0的多少倍?”。但这个问题在数学上是没有答案的,因为0不能作为除数。然而,如果我们从另一个角度考虑,即考虑极限情况(虽然这超出了原始问题的范围),当 b 趋近于0时,ba 可以趋近于正无穷大、负无穷大或某个特定的值(取决于 a 和 b 的符号以及它们趋近于0的方式),但这仍然不是唯一确定的解。在更一般的上下文中,当分母为0时,我们通常会说表达式没有唯一解,因为它不能给出一个明确的数值结果。
c2/c1真实存在的情况下求解为什么会遇到分母为0?
当我们在求解过程中遇到 c1c2 的分母 c1 为0的情况时,这通常意味着我们在应用某种数学方法或算法时,没有正确地处理或避免这种特殊情况。这种情况可能发生在多种数学和工程问题中,比如解线性方程组、求矩阵的逆、计算分式函数的值等。
下面,我通过一个简单的例子来解释为什么求解 c1c2 时可能会出现分母为0的情况:
例子:解线性方程组
考虑以下线性方程组:
c1x+c2y=d1
c3x+c4y=d2
如果我们尝试通过消元法来解这个方程组,可能会遇到需要除以某个系数(可能是 c1 或 c2,c3 或 c4)的情况。假设我们在消元过程中,试图将第一个方程乘以某个数,然后与第二个方程相减以消去 x 或 y,但在这个过程中,我们可能会发现需要除以 c1(或类似的系数),而 c1 恰好为0。
例如,如果我们尝试将第一个方程乘以 c1c3(以便消去 x),但 c1=0,那么我们就遇到了问题,因为不能除以0。这种算法不正确
在这种情况下,方程组可能是无解的(如果其他方程和系数不允许我们找到满足所有方程的 x 和 y),或者它可能有无数多个解(如果其他方程和系数是退化的,即它们不提供足够的信息来唯一确定 x 和 y)。
然而,就 c1c2 本身而言,如果我们在求解过程中遇到了 c1=0 的情况,并且我们试图直接计算这个比值,那么我们就无法给出一个有意义的答案,因为任何数除以0都是未定义的。
注意四,推导失真矩阵R
再根据R的首个元素等于1,可以求解出R对应的C1C2
分母为0算法不适用
ax = b ,求解x。当某情况下 a = 0 时,此时肯定也是0。有方程 0x = 0 .无法求解x。可见在这种情况下该算法ax=b无法求解x。要找一个算法cx = d,使得在该情况下c不等于0,此时可以求解x。