Quegan算法注意

目标假设:
散射互易性S12 = S21       
同极化和交叉极化回波不相关

系统假设

1、

按列展开

2、矩阵R,T非对角线项很小

这个假设进一步细化了上一个假设中关于矩阵R和T的性质。它指出,虽然矩阵中存在表示不同通道间相互影响的非对角线项,但这些项的影响相对较小。这意味着在大多数情况下,我们可以忽略这些交叉项,只关注对角线项,即同一通道内的响应和畸变。这样的假设可以简化模型,使得分析和计算变得更加容易。然而,在需要高精度建模的场合,这些交叉项可能不能忽略。

 模型

由目标同极化与交叉极化不相关可得。注意说,水平极化通道指的地水平发射水平接收Shh,不是仅仅指某个单独的发射或接收

参数

方程组11-21(都是从附录A得到的)

方程组1
目标的协方差矩阵元素可由下式求得,观测的C11C44C14用来描述方位角对称分布目标的协方差矩阵

可见σ11是由附录a的方程得到的

α是全局量,β是局部量

在这句话中,“全局量”和“局部量”是用来描述参数或变量在系统中的作用域或影响范围的术语。

  1. 全局量(Global Quantity)
    • 全局量是指在整个系统或问题范围内都保持一致或通用的量。它不受系统中特定部分或具体实例的影响。
    • 在这个上下文中,α 被描述为一个全局量,因为它代表了系统的整体不平衡特性,这个特性不依赖于任何特定的目标或测量。它反映了系统在发射和接收通道之间的整体增益或衰减差异,这种差异对于所有通过该系统的信号都是相同的。
  2. 局部量(Local Quantity)
    • 局部量则是指仅在系统或问题的某个特定部分或实例中有效或变化的量。它可能随着系统中不同部分或不同实例的特性而变化。
    • 在这里,β 被描述为一个局部量,因为它与特定目标散射的交叉极化功率 σ21​ 成正比。这意味着 β 的值会随着目标的不同而变化,因为不同的目标可能会有不同的物理特性和散射特性,从而导致不同的交叉极化功率。

简而言之,全局量在整个系统中保持一致,而局部量则可能随着系统中不同部分的特性而变化。在这个例子中,α 描述了系统的整体特性(全局),而 β 则反映了特定目标的特性(局部)。

方程组2

第七个方程是等价的,所以两个算一个。一共7个方程6个未知数。多出的一个方程要么是冗余(例如某个方程的倍数关系,没信息量)、要么是矛盾。但是如果只使用1-4和21这五个方程,可以求解u,v,w,z 和α共轭β的唯一解。因为“正好定”方程组,在没有冗余(矩阵不满秩)和矛盾(增广矩阵秩大于系数矩阵秩)的情况下是由唯一解的。(这是处理超定方程时的手段,选择独立的方程组成“正好定”方程组来求得唯一解)

过定方程组:过定方程组是指方程的数量多于未知数的数量的方程组。在标准情况下,如果方程组是“恰好定”的(即方程数量等于未知数数量),那么理论上应该有一个唯一解(在实数范围内,且没有冗余或矛盾方程的情况下)。然而,当过定方程组中的方程不是完全独立的(即存在冗余或矛盾),那么方程组可能不一致,即没有解满足所有方程。

在解决超定方程组(即包含更多方程比未知数的方程组)时,通常不直接求解整个方程组,而是采用一些特定的方法来处理这种超定性。以下是几个原因和常用的处理方法:

原因

  1. 无解情况:超定方程组在严格意义上可能没有精确解,因为方程的数量超过了未知数的数量,导致方程组内部存在矛盾。

  2. 冗余信息:超定方程组中的额外方程通常包含冗余信息,这些信息可以用于提高解的准确性或鲁棒性,但也可能引入噪声或不一致性。

  3. 计算复杂性:直接求解超定方程组可能需要复杂的计算,并且可能不总是可行的,特别是在未知数数量较多时。

处理方法

1.最小二乘法
最小二乘法是处理超定方程组的一种常用方法。它试图找到一组解,使得所有方程的残差(即实际值与预测值之间的差异)的平方和最小。这种方法可以提供一个近似解,该解在某种意义上是“最优”的。

2.选择独立方程
在某些情况下,可以从超定方程组中选择一个子集,该子集包含足够的信息来求解未知数,同时尽可能减少冗余和噪声。这通常需要对问题的物理或数学背景有深入的理解。

---------------------------------------------------------------------------------------------------------------------------------

开始求解

1.解uvwz

Δ = 0代表建模不适用与这种特殊情况,uvwz都是人为建模出来的,求得的解有分母。在某种情况下分母为0,代表这种建模,或是求解方法在同极化通道完全相关或反相关的时候不适用。

2.解α β

两组解的α*β相同(可见附录A),且解得的α1 α2和原方程得到的解是一致的,α1 α2很真实。

2024-8-4  疑问:但是β是实数?定义是实数,但求解过程α*β是用了简化的,α的解是真实地,再根据α*β和α求出β的值就不再是实数了呀。

数据验证α1 α2的不同

α1 α2 的解幅度不一样,且都接近于1。

文章里有一句话:必须强调的是,这种不一致性不仅仅是本文所介绍的算法的特性,而是数据本身的固有属性

这句话“必须强调的是,这种不一致性不仅仅是本文所介绍的算法的特性,而是数据本身的固有属性”意味着,在观察到的结果中存在的不一致性(即两个∣α∣值差异大且显著偏离1,以及解之间的负相关等)并不是仅仅由于本文所讨论或使用的算法所导致的。相反,这种不一致性是数据本身所固有的,也就是说,即使使用不同的算法或方法来处理这些数据,也可能会遇到类似的不一致性。这表示虽然算法得到两种不同的解,但差异大且负相关这种情况是数据带来的,因为该波段的这个数据图像中的大部分区域C22​和C33​取值相近

距离变大,什么参数会改变?

  1. 距离对σ21​的影响:散射系数σ21​通常与目标物体的物理特性(如形状、大小、材料)以及雷达波与目标之间的相互作用方式有关。然而,当雷达距离目标非常远时,雷达波与目标之间的相互作用可能会减弱,导致散射回波的能量减少。这种减少可能表现为σ21​的减小,尽管这种减小可能不是线性的,并且受到多种因素的影响。

考虑噪声,使α1 α2两个解接近,求解α。

α1 α2是原方程的解,但原方程做了二阶项忽略所以会导致由两个不同的解。如果再考虑噪声可以使α1 α2的解更接近。

噪声模型:如果假设噪声与信号之间以及各通道之间是不相关的,且每个通道i(hv这叫一个通道)的噪声均值为0,方差为Ni​,则

在噪声假设下,方程变为,其中15 16 17 18 21 不变,里面的C44项由于与很小的数相乘,所以不加噪声对求解无什么影响。但19 20中的同极化项系数是1,需要加躁声项

其中19,20变为

因为15-18和21没变,所以uvwz以及α*β求解结果没有改变。因为19 20变了,所以α1 β1 α2 β2的结果变了。 

不要看论文的推导,论文这部分符号混乱,新的解都用一个符号α和β代替了。
新的第二组解α3 β3

新的第二组解α4 β4

因为N2、N3都是正数,所以α3比α1偏小,α4比α2偏大  在论文里认为α3,α4相等就是真实的α。

之前认为不是一个α1α2不同解是数据体现出来的,现在认为同解其实也是认为噪声填补了两个解的差距,且α3,α4想用数据体现也不行,因为噪声项无法观测。

以C22为例说明,如果同极化和交叉极化相关≠0 ,对协方差元素的影响
(掠过这一块)

用N2 = N3求解α

当α2 = 0 或者α1 未定义 或α2未定义的时候,α不能求解

        求解噪声N2 N3

噪声N2 = N3,求解N2就行

解释α1α2在不同波段的相差程度不一样,用不同波段的噪声大小不同来解释

注意β是局部量,有σ21,不同图像的β不同。α是全局量,只与系统有关。

校准目标协方差矩阵

相对校准是指在不依赖绝对校准参数(如系统整体增益Y)的情况下,仅通过雷达系统内部的可测量参数或已知目标特性来校准系统。在您给出的上下文中,绝对校准项∣Y∣^2虽然影响绝对功率测量,但只要它在整个场景中保持不变,就不会影响相对校准结果

交叉干扰(cross-talk)就是串扰,uvwz,因为α,β与uvwz有关,所以方程与交叉干扰的关系由α,β链接。

σ11 和σ22 相对功率比误差:c^4/σ22^4 = 1.1^8 =2.1436  10log10(2.1436) = 3.314dB

求解11-14方程组,获得目标真实的协方差矩阵                                       

已知α,β。求解未知参数σ11 σ21 σ22 ρ Y k。4个方程 6 个未知数。为了得到原始数据σ11 σ21 σ22 ρ,只能将其用Y, K表示。(注意现在式子不用求解了,已经是用Y,K表示的了,如果σ11 σ21 σ22 ρ混在一起,才需要求解。)其中Y在σ11 σ21 σ22 ρ中都相同,可以作为绝对矫正忽略。

我们把ρ当作交叉干扰的耦合,指两个不同极化通道之间的相关,可见与α有关。因为Y,K未知,且只有ρ受到arg(k)的影响,所以ρ在一个图像中的相位不变,则各个元素的相位差不变。注意C11C14C44在一个图像中只有一个,其是不变的。α,β,Y,k在一个图像中也只有一个,表示系统的。所以正常情况下ρ相位就是不变的,所以如果ρ的相位改变,则不符合模型,无法求解

σ21在文章中叫交叉极化功率

解释什么叫11-13式子中的修正

解释如何得到14式子的近似式子

同极化通道间的相关系数<Shh SVV*>

左边是同极化相关系数的模,再经过分母归一化。 可见右边直接从观测量就能得到真实的相关系数

复线性相关,相关系数的模等于1

什么叫相关系数的模决定相位差分布的明确程度

相关系数的模越接近1,说明HH和VV通道的信号在统计上越接近线性相关,即它们的相位变化在一定程度上是同步的或具有某种可预测的关系。当这种线性关系很强时,相位差的变化范围就会相对较小,从而导致相位差分布较为明确或“尖锐”。换句话说,相位差的不确定性较小,我们可以更准确地估计或预测两个通道之间的相位差。


附录A(两个方程组都是由附录A推导的)

观测协方差矩阵元素方程(用了目标同计划和交叉极化不相关假设)

观测协方差矩阵(目标同计划和交叉极化不相关假设下)的元素,未给出的元素用厄尔米特性可得。

C矩阵元素忽略了二阶项,这里的“二阶项”并不是简单地指二次方,而是指在某个特定方程中,与主要项(即一阶项)相比,其重要性或量级较小的项。然而,这里也明确指出,这些表达式中的任何项都不能仅基于量级大小就事先被忽略,这意味着尽管进行了近似,但保留的项都是基于某种物理或数学上的重要性而选择的。


求解uvwz和α*β(用了rij tij很小的假设)

21式是z,w,α*β的关系式子,再将21带入到式子17,运用rij tij很小的假设,得到得到w和α*β的关系,再带回到21式子,就得到z和w的关系。如此再经过21式子和18式子可再得到z和w关系的另一个式子。由此可以解z和w。再将z和w带回21式子,α*β也解出来了(注意求解出的u,v,w,z, α*β满足21式子,但是不满足15-18式子。因为用了rij tij很小的假设,求解出的u,v,w,z满足去掉第三项的15-18式子)

求解uvwz的时候用了rij tij很小,省去了一些项

原文还指出,这个求解过程得到的74、75式子相当于忽略了方程(17)和(18)右边的第三项。这通常意味着在特定条件下(可能是由假设(5)或其他条件给出的),这些第三项的影响可以忽略不计,从而使得方程组的求解变得更加简单。

11-21是目标交叉极化与同极化不相关假设得到的,22-24是在原假设基础上,新增rij tij很小得到的。求解uvwz时假设rij tij很小得到的式子相当于15-18去掉第三项。

所以15-18式子去掉第三项就是目标交叉极化与同极化不相关假设rij tij很小假设,共同作用的结果。再用去掉第三项的式子子可求解出uvwz

求解α 和β)

u v w z α*β 求解结果满足15-18去掉第三项的方程和21方程。


用rijtij很小的假设与附录中不用rijtij很小的假设求解得到的α1,α2相同
α1 和β1 求解结果满足15-18去掉第三项的方程和21方程+方程19,
α2 和β2 求解结果满足
15-18去掉第三项的方程和21方程+方程20
且解出的α1
α2与直接用原方程组15-21解出的结果70、71相同,因为7071求解的时候用C21- αC31,也消掉了第三项。(虽然uvwz经历过假设已经不真实了)
注意:15-21 和 55-64都被称作原方程组,,因为15-21是由55-64推出的,且没有额外的限制条件。

方程19和方程20都是由原方程组推导来的,所以都是真实的,所以两组解应该大差不差

这里解释了求解出的β为什么是实数,因为β是用原方程求得,而β的定义可以看见是实数。这表示在满足假设的情况下,用原方程获得的β就是定义的β

  • 17
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值