问题描述
思路
最初分析题目发现,只要每次都把最小值放在中间,例如:
题目中给出的数据,第一步就把2给放在中间,进行间接消除;然后再依次寻找最小值进行消除。
计算聚合能量的函数
所以首先写一个函数,用于输入最小值的位置信息后,计算得到聚合能量操作后得到的能量以及项链编号:
global necklace
global re
def cal(i):
global necklace
global re
if(i == len(necklace) - 1):
re = re + necklace[i - 1] * necklace[i] * necklace[0]
necklace.pop(i)
elif(i == 0):
re = re + necklace[0] * necklace[-1] * necklace[1]
necklace.pop(i)
else:
re = re + necklace[i] * necklace[i - 1] * necklace[i + 1]
necklace.pop(i)
注:我这边项链编号信息等用的是全局变量,这样就不用传参传来传去太麻烦。
主要考虑的就是在中间时,那就前后共三个数据相乘;
在第一个时,第一个,第二个,最后一个三个相乘;
在最后一个时,最后一个,倒数第二个,第一个相乘;
寻找最小值的函数
然后写一个寻找列表中最小值所在位置的函数,并且注意,如果有多个也需要全部考虑进去
global necklace
global re
def new_find():
global necklace
global re
temp = []
for i in range(len(necklace)):
if(necklace[i] == min(necklace)):
temp.append(i)
return(temp)
完整代码
import sys
global necklace
global re
def cal(i):
global necklace
global re
if(i == len(necklace) - 1):
re = re + necklace[i - 1] * necklace[i] * necklace[0]
necklace.pop(i)
elif(i == 0):
re = re + necklace[0] * necklace[-1] * necklace[1]
necklace.pop(i)
else:
re = re + necklace[i] * necklace[i - 1] * necklace[i + 1]
necklace.pop(i)
def new_find():
global necklace
global re
temp = []
for i in range(len(necklace)):
if(necklace[i] == min(necklace)):
temp.append(i)
return(temp)
n = int(input())
necklace = []
re = 0
temp = input().split(" ")
for i in range(0, n):
necklace.append(int(temp[i]))
re = 0
for j in range(len(necklace) - 1):
temp_1 = new_find()
for k in range(len(temp_1)):
cal(temp_1[k])
if(len(necklace) == 1):
print(re)
sys.exit