【ACWing】320. 能量项链

题目地址:

https://www.acwing.com/problem/content/322/

在Mars星球上,每个Mars人都随身佩带着一串能量项链,在项链上有 N N N颗能量珠。能量珠是一颗有头标记与尾标记的珠子,这些标记对应着某个正整数。并且,对于相邻的两颗珠子,前一颗珠子的尾标记一定等于后一颗珠子的头标记。因为只有这样,通过吸盘(吸盘是Mars人吸收能量的一种器官)的作用,这两颗珠子才能聚合成一颗珠子,同时释放出可以被吸盘吸收的能量。如果前一颗能量珠的头标记为 m m m,尾标记为 r r r,后一颗能量珠的头标记为 r r r,尾标记为 n n n,则聚合后释放的能量为 m ∗ r ∗ n m*r*n mrn(Mars单位),新产生的珠子的头标记为 m m m,尾标记为 n n n。需要时,Mars人就用吸盘夹住相邻的两颗珠子,通过聚合得到能量,直到项链上只剩下一颗珠子为止。显然,不同的聚合顺序得到的总能量是不同的,请你设计一个聚合顺序,使一串项链释放出的总能量最大。例如:设 N = 4 N=4 N=4 4 4 4颗珠子的头标记与尾标记依次为 ( 2 , 3 ) , ( 3 , 5 ) , ( 5 , 10 ) , ( 10 , 2 ) (2,3), (3,5), (5,10), (10,2) (23),(35),(510),(102)。我们用记号 ⊕ ⊕ 表示两颗珠子的聚合操作, ( j ⊕ k ) (j⊕k) (jk)表示第 j j j k k k两颗珠子聚合后所释放的能量。则第 4 4 4 1 1 1两颗珠子聚合后释放的能量为: ( 4 ⊕ 1 ) = 10 ∗ 2 ∗ 3 = 60 (4⊕1)=10*2*3=60 (41)=1023=60。这一串项链可以得到最优值的一个聚合顺序所释放的总能量为 ( ( 4 ⊕ 1 ) ⊕ 2 ) ⊕ 3 ) = 10 ∗ 2 ∗ 3 + 10 ∗ 3 ∗ 5 + 10 ∗ 5 ∗ 10 = 710 ((4⊕1)⊕2)⊕3)= 10*2*3+10*3*5+10*5*10=710 ((41)2)3)=1023+1035+10510=710

输入格式:
输入的第一行是一个正整数 N N N,表示项链上珠子的个数。第二行是 N N N个用空格隔开的正整数,所有的数均不超过 1000 1000 1000,第 i i i个数为第 i i i颗珠子的头标记,当 i < N i<N i<N时,第 i i i颗珠子的尾标记应该等于第 i + 1 i+1 i+1颗珠子的头标记,第 N N N颗珠子的尾标记应该等于第 1 1 1颗珠子的头标记。至于珠子的顺序,你可以这样确定:将项链放到桌面上,不要出现交叉,随意指定第一颗珠子,然后按顺时针方向确定其他珠子的顺序。

输出格式:
输出只有一行,是一个正整数 E E E,为一个最优聚合顺序所释放的总能量。

数据范围:
4 ≤ N ≤ 100 4≤N≤100 4N100
1 ≤ E ≤ 2.1 ∗ 1 0 9 1≤E≤2.1∗10^9 1E2.1109

思路是动态规划。可以采用处理环形问题的通用技巧,即复制一份接到后面。这里虽然输入是 N N N个数,但实际上我们要求的是长 N + 1 N+1 N+1的区间的最大能量,所以要将这 N N N个数重复一遍拼在后面,形成长 2 N 2N 2N的数组,这样就转化为了线性问题。设 f [ i ] [ j ] f[i][j] f[i][j]是合并区间 [ i , j ] [i,j] [i,j]所能产生的最大能量,可以按照最后一次合并的中间值来分类,其范围为 [ i + 1 : j − 1 ] [i+1:j-1] [i+1:j1],所以有: f [ i ] [ j ] = max ⁡ i + 1 ≤ k ≤ j − 1 { f [ i ] [ k ] + f [ k ] [ j ] + a [ i ] ∗ a [ k ] ∗ a [ j ] } f[i][j]=\max_{i+1\le k\le j-1}\{f[i][k]+f[k][j]+a[i]*a[k]*a[j]\} f[i][j]=i+1kj1max{f[i][k]+f[k][j]+a[i]a[k]a[j]}最后只需要返回 max ⁡ i f [ i ] [ i + N ] \max_i f[i][i+N] maxif[i][i+N]即可。代码如下:

#include <iostream>
using namespace std;

const int N = 210;
int n;
int a[N];
int f[N][N];

int main() {
    cin >> n;
    for (int i = 1; i <= 2 * n; i++)
        if (i <= n) cin >> a[i];
        else a[i] = a[i - n];

    int res = 0;
    for (int l = 3; l <= n + 1; l++)
        for (int i = 1; i + l - 1 <= 2 * n; i++) {
            int j = i + l - 1;
            for (int k = i + 1; k <= j - 1; k++)
                f[i][j] = max(f[i][j], f[i][k] + f[k][j] + a[i] * a[k] * a[j]);
            
            if (l == n + 1) res = max(res, f[i][j]);
        }

    cout << res << endl;

    return 0;
}

时间复杂度 O ( n 3 ) O(n^3) O(n3),空间 O ( n 2 ) O(n^2) O(n2)

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目链接:https://www.acwing.com/problem/content/4948/ 题目描述: 给定一棵有 $n$ 个结点的树,结点从 $1$ 到 $n$ 编号,每个结点都有一个权值 $w_i$,现在有 $m$ 次操作,每次操作是将树中编号为 $x$ 的结点的权值加上 $y$,然后询问一些节点是否为叶子节点,如果是输出 $1$,否则输出 $0$。 输入格式: 第一行包含两个整数 $n$ 和 $m$。 第二行包含 $n$ 个整数,其中第 $i$ 个整数表示结点 $i$ 的初始权值 $w_i$。 接下来 $n-1$ 行,每行包含两个整数 $a$ 和 $b$,表示点 $a$ 和点 $b$ 之间有一条无向边。 接下来 $m$ 行,每行描述一次操作,格式为三个整数 $t,x,y$。其中 $t$ 表示操作类型,$t=1$ 时表示将编号为 $x$ 的结点的权值加上 $y$,$t=2$ 时表示询问编号为 $x$ 的结点是否为叶子节点。 输出格式: 对于每个操作 $t=2$,输出一个结果,表示询问的结点是否为叶子节点。 数据范围: $1≤n,m≤10^5$, $1≤w_i,y≤10^9$ 样例: 输入: 5 5 1 2 3 4 5 1 2 1 3 3 4 3 5 2 3 0 1 3 100 2 3 0 1 1 100 2 3 0 输出: 1 0 0 算法1: 暴力dfs,每次都重新遍历整棵树,时间复杂度 $O(nm)$ 时间复杂度: 最坏情况下,每次操作都要遍历整棵树,时间复杂度 $O(nm)$,无法通过此题。 算法2: 用一个 vector<int> sons[n+5] 来存储每个点的所有子节点,这样可以用 $O(n)$ 预处理出每个点的度数 $deg_i$,如果 $deg_i=0$,则 $i$ 是叶子节点,否则不是。 对于每个操作,只需要更新叶子节点关系的变化就可以了。如果某个节点的度数从 $1$ 变成 $0$,则该节点变成了叶子节点;如果某个节点的度数从 $0$ 变成 $1$,则该节点不再是叶子节点。 时间复杂度: 每次操作的时间复杂度是 $O(1)$,总时间复杂度 $O(m)$,可以通过此题。 C++ 代码: (算法2)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值