NumPy数据分析
学习视频:Python数据分析与展示_北京理工大学_哔哩哔哩_bilibili P4-P10
数据的维度
- 一维数据:由对等关系的有序或无序数据构成,采用线性方式组织。例如列表和数组,这两者的区别是:列表的数据类型可以不同,数组的数据类型必须相同。
- 二维数据:由多个一维数据构成,是一维数据的组合形式。例如表格是典型的二维数据。
- 多维数据:由一维或二维数据在新维度上扩展形成
- 高维数据:仅利用最基本的二元关系展示数据间的复杂结构。例如json、yaml格式的数据
数据维度的Python表示
#一维数据:列表和集合类型
[1,2,3] #有序
{1,2,3} #无序#二维数据:列表类型
[[1,2,3],
[4,5,6]]#多维数据
[[[1,2,3],
[4,5,6]],
[7,8,9],
[4,4,4]]#高维数据:字典类型或数据表示格式,例如JSON、XML、YAML
dict={
'firstName':'Tian',
'lastName':'Song',
}
NumPy的多维数组对象:ndarray
NumPy是一个开源的python科学计算基础库,包含:
- 一个强大的N维数组对象:ndarray
- 广播功能函数
- 整合C/C++/Fortran代码的工具
- 线性代数,傅里叶变换、随机数生成等功能
NumPy是SciPy、Pandas等数据处理或科学计算库的基础
NumPy的引用:
import numpy as np
#这是一种约定俗成的引用名称,建议使用上述约定的别名
python已经有列表类型,为什么需要一个数组对象?
- 数组对象可以去除元素运算所需的循环,使一维向量更像单个数据
- 设置专门的数组对象,经过优化,可以提升这类应用的运算速度
- 数组对象采用相同的数据类型,有助于节省运算和存储空间
例:
#计算A^2+B^2,其中A和B是一维数组
import numpy as np
#使用列表的方式
def pySum():
a=[0,1,2,3,4]
b=[5,6,7,8,9]
c=[]
for i in range(len(a)):
c.append(a[i]**2+b[i]**2)
return c
print("pySum-->",pySum())
#使用数组的方式
def npSum():
a=np.array([0,1,2,3,4])
b=np.array([5,6,7,8,9])
c=a**2+b**2
return c
print("npSum-->",npSum())
#运行结果
'''
pySum--> [25, 37, 53, 73, 97]
npSum--> [25 37 53 73 97]
'''
#可见如果采用数组的方式,numy把一维向量当作单个数据对待,这样更有利于进行科学计算
ndarray对象的构成:
ndarry实例:
- 实际的数组
- 描述这些数据的元数据(数据维度、数据类型等)
ndarray数组一般要求所有元素类型相同(同质),数组下标从0开始
ndarry实例:
import numpy as np
#ndarray在程序中的别名是:array
#np.array()生成一个ndarray数组
a=np.array([[0,1,2,3,4],
[5,6,7,8,9]])
print(a) #np.array()输出成[]形式,元素有空格分割
'''
[[0 1 2 3 4]
[5 6 7 8 9]]
'''
#轴(axis):保存数据的维度;秩(rank):轴的数量
ndarray对象的属性
- .ndim:秩,即轴的数量或维度的数量
- .shape:ndarray对象的尺度,对于矩阵的n行m列
- .size:ndarray对象元素的个数,相当于.shape中的n*m的值
- .dtype:ndarray对象的元素类型
- .itemsize:ndarray对象中每个元素的大小,以字节为单位
实例:
import numpy as np
a=np.array([[1,2,3,4],
[5,6,7,8]])
print("维度:",a.ndim)
print("尺度:",a.shape)
print("元素个数:",a.size)
print("元素的类型:",a.dtype)
print("元素的大小:",a.itemsize)
'''
维度: 2
尺度: (2, 4)
元素个数: 8
元素的类型: int32
元素的大小: 4
'''
ndarray的元素类型
非同质的ndarray对象
非同质的ndarray元素为对象类型,无法有效发挥NumPy优势,尽量避免使用
import numpy as np
a=np.array([[1,2,3,4],
[5,6,7]])
print("尺度:",a.shape)
print("元素个数:",a.size)
print("元素的类型:",a.dtype)
print("元素的大小:",a.itemsize)
'''
尺度: (2,)
元素个数: 2
元素的类型: object
元素的大小: 8
'''
#此时每个一维向量被当成一个对象(元素)
ndarray数组的创建
从python中的列表、元组等类型创建ndarray数组
x=np.array(list/tuple,dtype=np.float32)
#当np.array()不指定dtype时,NumPy将根据情况关联一个dtype类型
例子:
使用NumPy中函数创建ndarray数组,如:arrange,ones,zeros
注:使用np.arange()方法创建的数组默认是int32类型,另外几种方法默认是float类型
例子:
例子:
例子:
ndarray数组的变换
ndarray数组的维度变换
例子:
ndarray数组的类型变换
new_a = a.astype(new_type)
#astype()方法一定会创建新的数组()原始数组的一个拷贝,即使两个类型一致
例子:
ndarray数组向列表的转换
ls=a.tolist()
例子:
ndarray数组的操作
ndarray数组的索引和切片
一维数组的索引和切片:与python的列表类似
多维数组的索引:
多维数组的切片:
ndarray数组的运算
数组与标量之间的运算作用于数组的每一个元素
NumPy一元函数
例子:
NumPy二元函数
例子: