线段树基本操作

#include <bits/stdc++.h>

using namespace std;

int a[] = {5, 3, 7, 2, 12, 1, 6, 4, 8, 15};

const int inf = INT_MAX;

struct Tree {
    int l, r, mx;
}tree[500];

// 创建线段树 节点的储存下标为k 节点区间为[l, r] 以最大值为例
/*
 * 1. 若是叶子节点(l == r) 则节点的最值就是对应位置的元素值
 * 2. 若是非叶子节点, 则递归创建左子树和右子树
 * 3. 节点的区间最值等于该节点左右子树的最大值
*/
void build(int k, int l, int r) {
    tree[k].l = l;
    tree[k].r = r;
    if (l == r) {
        tree[k].mx = a[l];
        return ;
    }
    int mid = (l + r) / 2;
    int lc = k * 2;
    int rc = k * 2 + 1;
    build(lc, l, mid);
    build(rc, mid + 1, r);
    tree[k].mx = max(tree[lc].mx, tree[rc].mx);
}

// 点更新指修改一个元素的值 a[i] 更新为 val
/*
 * 1. 若是叶子节点 满足l == r && l = i 表示找到了要修改的叶子节点 则修改节点的最值为val
 * 2. 若是非叶子节点,则判断是在左子树中更新还是右子树中更新
 * 3. 返回时更新节点的最值
*/
void update(int k, int i, int val) {
    // 找到a[i]
    if (tree[k].l == tree[k].r && tree[k].l == i) {
        tree[k].mx = val;
        return ;
    }
    int mid = (tree[k].l + tree[k].r) / 2;
    int lc = k * 2;
    int rc = k * 2 + 1;
    if (i <= mid) update(lc, i, val); // 到左子树更新
    else update(rc, i, val);
    // 返回时更新最值
    tree[k].mx = max(tree[lc].mx, tree[rc].mx);
}

// 区间查询 指查询[l, r]区间的最值
/*
 * 1. 若节点所在的区间被查询区间[L, R]覆盖则返回该区间的最值
 * 2. 判断在左子树还是右子树中查询
 * 3. 返回最值
//*/
int query(int k, int l, int r) {
    if (tree[k].l >= l && tree[k].r <= r) {
        return tree[k].mx;
    }
    int mid, lc, rc;
    mid = (tree[k].l + tree[k].r) / 2;
    lc = k * 2;
    rc = k * 2 + 1;
    int Max = -inf;
    if (l <= mid)  Max = max(Max, query(lc, l, r));
    if (r > mid) Max = max(Max, query(rc, l, r));
    return Max;
}

int main() {


    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

只微

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值