具体实现看代码
这里采用的是模拟的二叉树 真正的二叉树要递归或者循环创建
链表栈和递归写法
#include <iostream>
#include <cstdio>
#include <malloc.h>
using namespace std;
/*
* 前序遍历栈的实现逻辑
* 根 左 右 节点入栈并且输出 入到叶子节点 出栈 父节点遍历右子树
* */
struct treeNode {
int a; // 数据成员
struct treeNode *pFather; // 父节点
struct treeNode *pLeft; // 左孩子
struct treeNode *pRight; // 右孩子
};
// 链表结构的栈 尾添加尾删除 双向带空头链表
// 栈节点
struct stack {
struct treeNode *node; // 指向树的节点
struct stack *pre; // 指向前一个节点
struct stack *next; // 指向下一个节点
};
struct stack head; // 空头
struct stack *stacktop = &head; // 栈顶指针
// 入栈 链表尾添加
void push(struct treeNode *node) {
// 申请节点 并且成员赋值
struct stack *temp = (struct stack *)malloc(sizeof(struct stack));
if (NULL == temp) {
return ;
}
// 赋初值
temp->pre = NULL;
temp->next = NULL;
temp->node = node;
// 尾巴连接
stacktop->next = temp;
temp->pre = stacktop;
// 栈顶指针后移
stacktop = stacktop->next;
}
// 出栈 双向链表尾删除
struct treeNode *pop(void) {
if (stacktop == &head) {
// 栈空
return NULL;
}
struct treeNode *temp = stacktop->node; // 得到栈顶的树节点
stacktop = stacktop->pre; // 节点前移
free(stacktop->next); // 释放节点
stacktop->next = NULL; // 新尾指针指向空
return temp;
}
// 前序遍历 递归写法
void pre_look(struct treeNode *root) {
if (root != NULL) {
printf("%d ", root->a);
pre_look(root->pLeft);
pre_look(root->pRight);
}
}
// 前序遍历 栈写法
void preLookByStack(struct treeNode *root) {
if (NULL == root)
return ;
struct treeNode *tp = root;
// 死循环 里面break
while (NULL != tp || stacktop != &head) {
// 左子树入栈并输出 一直到叶子
while (tp != NULL) {
printf("%d ", tp->a);
push(tp);
tp = tp->pLeft;
}
struct treeNode *t = pop(); // 出栈
tp = t->pRight;
// if (NULL == tp && stacktop == &head) // 栈为空并且最后一个节点没有孩子
// break;
}
}
int main() {
struct treeNode t1 = { 1 };
struct treeNode t2 = { 2 };
struct treeNode t3 = { 3 };
struct treeNode t4 = { 4 };
struct treeNode t5 = { 5 };
struct treeNode t6 = { 6 };
struct treeNode t7 = { 7 };
struct treeNode t8 = { 8 };
struct treeNode t9 = { 9 };
struct treeNode t10 = { 10 };
// 链接
t1.pLeft = &t2;
t1.pRight = &t3;
t1.pFather = NULL;
t2.pLeft = &t4;
t2.pRight = &t5;
t2.pFather = &t1;
t3.pRight = &t6;
t3.pLeft = NULL;
t3.pFather = &t1;
t4.pLeft = NULL;
t4.pRight = NULL;
t4.pFather = &t2;
t5.pLeft = &t7;
t5.pRight = &t8;
t5.pFather = &t2;
t6.pLeft = &t9;
t6.pRight = &t10;
t6.pFather = &t3;
t7.pLeft = NULL;
t7.pRight = NULL;
t7.pFather = &t5;
t8.pLeft = NULL;
t8.pRight = NULL;
t8.pFather = &t5;
t9.pLeft = NULL;
t9.pRight = NULL;
t9.pFather = &t6;
t10.pLeft = NULL;
t10.pRight = NULL;
t10.pFather = &t6;
printf("递归前序遍历:\n");
pre_look(&t1);
printf("\n栈写法前序遍历(双向带空头链表):\n");
preLookByStack(&t1);
return 0;
}
前序遍历数组栈写法
//
// Created by Cauchyshy on 2023/5/23.
//
#include <iostream>
#include <cstdio>
using namespace std;
// 树的深度 4 就行 这里我们的例子是4 跟自己的层数一样即可
#define TREE_DEEP 5
struct treeNode {
int a; // 数据成员
struct treeNode *pFather; // 父节点
struct treeNode *pLeft; // 左孩子
struct treeNode *pRight; // 右孩子
};
// 由于不需要前后指针 直接用树叶指针类型即可 装树几点地址即可
struct treeNode *stack[TREE_DEEP] = {0};
// 用下标最栈顶指示符即可 栈顶
int stacktop = -1; // -1表示空栈 因为下标从0开始 0元素就是一个栈内元素了
// 入栈
void push(struct treeNode *node) {
if (NULL == node)
return ;
stacktop++; // 栈顶标记先自加1
stack[stacktop] = node; // 然后对栈顶赋值
}
//出栈
struct treeNode * pop(void) {
if (stacktop == -1)
return NULL;
int pre = stacktop;
stacktop--;
return stack[pre];
}
// 前序遍历 递归写法
void pre_look(struct treeNode *root) {
if (root != NULL) {
printf("%d ", root->a);
pre_look(root->pLeft);
pre_look(root->pRight);
}
}
// 前序遍历数组栈写法
void preLookByArray(struct treeNode *root) {
if (NULL == root)
return ;
struct treeNode *tp = root;
while (1) {
// 左子树入栈 一直到叶子
while (tp != NULL) {
printf("%d " , tp->a);
push(tp);
tp = tp->pLeft;
}
if (stacktop == -1)
break;
struct treeNode *t = pop();
tp = t->pRight;
}
}
int main() {
struct treeNode t1 = { 1 };
struct treeNode t2 = { 2 };
struct treeNode t3 = { 3 };
struct treeNode t4 = { 4 };
struct treeNode t5 = { 5 };
struct treeNode t6 = { 6 };
struct treeNode t7 = { 7 };
struct treeNode t8 = { 8 };
struct treeNode t9 = { 9 };
struct treeNode t10 = { 10 };
// 链接
t1.pLeft = &t2;
t1.pRight = &t3;
t1.pFather = NULL;
t2.pLeft = &t4;
t2.pRight = &t5;
t2.pFather = &t1;
t3.pRight = &t6;
t3.pLeft = NULL;
t3.pFather = &t1;
t4.pLeft = NULL;
t4.pRight = NULL;
t4.pFather = &t2;
t5.pLeft = &t7;
t5.pRight = &t8;
t5.pFather = &t2;
t6.pLeft = &t9;
t6.pRight = &t10;
t6.pFather = &t3;
t7.pLeft = NULL;
t7.pRight = NULL;
t7.pFather = &t5;
t8.pLeft = NULL;
t8.pRight = NULL;
t8.pFather = &t5;
t9.pLeft = NULL;
t9.pRight = NULL;
t9.pFather = &t6;
t10.pLeft = NULL;
t10.pRight = NULL;
t10.pFather = &t6;
printf("递归前序遍历:\n");
pre_look(&t1);
printf("\n数组栈前序遍历写法:\n");
preLookByArray(&t1);
return 0;
}